Abstract
This paper presents an energy management strategy for parallel plug-in-hybrid electric vehicles which combines Dynamic Programming (DP) and Pontryagin’s Minimums Principle (PMP). In particular, this paper focusses on the practical challenges encountered in series-production vehicles and develops corresponding extensions: First, the paper considers the effects of uncertain prediction data received from a navigation unit. Secondly, we consider engine starting costs in the DP-PMP framework and thirdly, we allow to constrain the engine state (on/off) in certain parts of the driving cycle. These three components are integrated into a unified DP-PMP framework. Simulation studies demonstrate the practical benefit of the algorithm and show close to optimal performance in terms of fuel consumption. At the same time the algorithm is computationally cheap and allows real-time operation on series-production ECUs.
Zusammenfassung
Diese Arbeit präsentiert einen Ansatz für das Energiemanagement eines parallelen Plug-in-Hybridfahrzeugs, welcher auf einer Kombination von Dynamischer Programmierung (DP) und dem Minimumprinzip nach Pontryagin (PMP) basiert. In diesem Rahmen werden im Speziellen die aus einem Einsatz in Serienfahrzeugen resultierenden Anforderungen diskutiert. Dabei werden die folgenden Aspekte behandelt: Zuerst wird der Einfluss von unsicheren Vorausschaudaten betrachtet, welche von Serien-Navigationssystemen bereitgestellt werden können. Darüber hinaus wird eine Erweiterung vorgestellt, die die Berücksichtigung von Motorstartkosten in das vorgestellte DP-PMP-Framework integriert. Abschließend wird eine Beschränkung des Motorzustands in bestimmten Abschnitten des Fahrzyklus integriert. Die angesprochenen Aspekte werden in dieser Arbeit in ein einheitliches DP-PMP-Framework integriert. Der Vorteil des vorgestellten Frameworks wird über Simulation bewertet, wobei ein Kraftstoffverbrauch ausgewiesen werden kann, welcher nah am erreichbaren Optimum liegt. Durch das präsentierte DP-PMP-Framework kann darüber hinaus ein sehr recheneffizientes Verfahren ermöglicht werden, welches auf Seriensteuergeräten implementiert werden kann.
About the authors
Roland Schmid received the M.Sc. degree in Electrical Engineering and Information Technology from the Technical University of Munich (TUM). He is currently working for the BMW Group in Munich and is pursuing the Ph.D. degree in cooperation with the Technical University of Kaiserslautern where he is supervised by Prof. Dr.-Ing. N. Bajcinca. His research interests include optimal and predictive control theory in the automotive domain.
Johannes Bürger received the M.Eng. degree in Engineering Science from the University of Oxford in 2008. In 2013 he obtained a D.Phil. in Engineering Science, also from the University of Oxford, for his work on efficient optimization techniques for robust model predictive control. Since 2013 he works as a powertrain control engineer at the BMW Group in Munich. His research interests include optimal, predictive and learning-based control theory and control applications in the automotive domain.
Naim Bajcinca has graduated on Theoretical Physics and Electrical Engineering from the University of Prishtina. He completed his Ph.D. in Robust Control at the Institute of Robotics and Mechatronics at DLR (German Aerospace Research Center) in Oberpfaffenhofen and TU Berlin in Germany. He worked as a research associate at Max-Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, prior to accepting a Full Professor position at the University of Kaiserslautern, Department of Mechanical and Process Engineering in Germany. Current research interest of Professor Bajcinca comprise design and analysis control theories for hybrid and switching dynamical systems, scheduling of cyberphysical systems, cooperative robotics, population balance systems in chemical engineering, multiscale modeling of cancer in systems biology, as well as learning based control.
Appendix A Convergence analysis
This section provides a convergence analysis of the optimization strategy of subsection 4.3. For this we consider the update law shown in Equation 37:
To visualize the central aspects of the following discussion, Figure 11 shows an exemplary depiction of the resulting terminal state-of-energy values resulting for a set of predefined, constant co-states. In this context, two cases are considered, the control of the engine on/off decision in combination with the power split by combining PMP with DP (left part of Figure 11) and a sole control of the power split based on PMP (right part of Figure 11).
Considering the PMP-DP-Solution in the left part of Figure 11, one may notice that there exist terminal state of energy values which may not be reached for a given constant co-state. This effect can be explained by the fact, that for certain engine operation points a transition of the electrical driving decision occurs at a DP decision boundary present for a co-state
with
with
and as
Due to the convex modelling of
Accordingly the convergence of the update law can be shown as follows: We first consider the case that
In practice these aspects result in a trade-off between computationally efficiency (due to the number of iterations required through the choice of κ) and accuracy in approaching the value of
References
1. W. Enang and C. Bannister, “Modelling and control of hybrid electric vehicles (A comprehensive review),” Renewable and Sustainable Energy Reviews, vol. 74, pp. 1210–1239, July 2017, DOI: 10.1016/j.rser.2017.01.075.Search in Google Scholar
2. G. Rizzoni and S. Onori, “Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University,” Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, vol. 70, no. 1, pp. 41–54, Jan. 2015, DOI: 10.2516/ogst/2014006.Search in Google Scholar
3. V. Ngo, T. Hofman, M. Steinbuch and A. Serrarens, “Optimal Control of the Gearshift Command for Hybrid Electric Vehicles,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8, pp. 3531–3543, Oct. 2012, DOI: 10.1109/TVT.2012.2207922.Search in Google Scholar
4. O. Sundstrom and L. Guzzella, “A generic dynamic programming Matlab function,” presented at the IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, July 2009, pp. 1625–1630.10.1109/CCA.2009.5281131Search in Google Scholar
5. Z. Yuan, L. Teng, S. Fengchun and H. Peng, “Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle,” Energies, vol. 6, no. 4, pp. 2305–2318, April 2013, DOI: 10.3390/en6042305.Search in Google Scholar
6. S. Delprat, T. Hofman and S. Paganelli, “Hybrid Vehicle Energy Management: Singular Optimal Control,” IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9654–9666, Nov. 2017, DOI: 10.1109/TVT.2017.2746181.Search in Google Scholar
7. R. Schmid, J. Buerger and N. Bajcinca, “A comparison of PMP-based Energy Management Strategies for Plug-in-Hybrid Electric Vehicles,” presented at the 9th IFAC International Symposium on Advances in Automotive Control, Orleans, France, June 2019.10.1016/j.ifacol.2019.09.094Search in Google Scholar
8. D. P. Bertsekas, Dynamic Programming and Control – Volume 1, Athena Scientific, Belmont, Massachusetts, 2017.Search in Google Scholar
9. B. de Jager, T. van Keulen, J. Kessels, Optimal Control of Hybrid Vehicles, Springer, London, 2013.10.1007/978-1-4471-5076-3Search in Google Scholar
10. S. Onori, L. Serrao and G. Rizzoni, Hybrid Electric Vehicles – Energy Management Strategies, Springer, London, 2016.10.1007/978-1-4471-6781-5Search in Google Scholar
11. T. Nüesch, P. Elbert, M. Flankl, C. Onder and L. Guzzella, “Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs,” Energies, vol. 7, no. 2, pp. 834–856, Feb. 2014, DOI: 10.3390/en7020834.Search in Google Scholar
12. P. Elbert, T. Nüesch, A. Ritter, N. Murgovski and L. Guzzella, “Engine On/Off Control for the Energy Management of a Serial Hybrid Electric Bus via Convex Optimization,” IEEE Transactions on Vehicular Technology, vol. 63, no. 8, pp. 3549–3559, Jan. 2014, DOI: 10.1109/TVT.2014.2304137.Search in Google Scholar
13. S. Onori and L. Tribioli, “Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt,” Applied Energy, vol. 147, no. 1, pp. 224–234, June 2015, DOI: 10.1016/j.apenergy.2015.01.021.Search in Google Scholar
14. T. van Keulen, J. Gillot, B. de Jager and M. Steinbuch, “Solution for state constrained optimal control problems applied to power split control for hybrid vehicles,” Automatica, vol. 50, no. 1, pp. 187–192, Jan. 2014, DOI: 10.1016/j.automatica.2013.09.039.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston