Abstract
This paper presents a proportional-derivative protocol for the consensus problem of a class of linear second-order multi-agent systems with local information transmission. The communication topology among the agents is switching and agents receive information within a critical bounded distance. As new observations, we show that the desired protocol system undergoes consensus and swarming behaviours when 1 is a simple eigenvalue of the adjacency matrix. In this case, both final velocity and final relative position are formulated. Simulation results show the effectiveness of the proposed protocol.
Zusammenfassung
In diesem Beitrag werden für lineare Multiagentensysteme zweiter Ordnung mit lokaler Informationsübertragung Lösungen für das Konsens-Schwarmproblem vorgestellt. Die Kommunikationstopologie zwischen den Agenten ist schaltend und die Agenten empfangen Informationen innerhalb einer kritischen beschränkten Distanz. Für den Fall, dass 1 ein einfacher Eigenwert der Adjazenzmatrix ist, werden Bedingungen für das Konsens-Schwarmverhalten abgeleitet. Dafür werden sowohl die Endgeschwindigkeit als auch die Endposition angegeben. Simulationsergebnisse zeigen die Leistungsfähigkeit des vorgeschlagenen Verfahrens.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11671011
Funding statement: This work was supported by the National Natural Science Foundation of China (11671011).
About the authors
Jun WU received her M. S. and Ph. D. degrees from the School of Mathematics and Econometrics, Hunan University, Changsha, Hunan. She has visited Canada as a visiting scholar at 2016. Her research areas include Fixed point theory, Particle system, Cybernetics, Artificial intelligence, Functional Differential equation and so on. Now she is an associated professor of Changsha University of Science and Technology.
Yicheng Liu received his M. S. and Ph. D. degrees from the Department of Mathematics, National University of Defense Technology, Changsha, Hunan. He has visited Canada as a visiting scholar. His research areas include Multi-system, Cluster, Cybernetics, Artificial intelligence, Differential equation dynamical system and so on. Now he is a professor of National University of Defense Technology.
Proof of Lemma 3.1.
To formulate the fundamental solution of (3.3), we consider the following three cases:
Case I.
where
Case II.
where
Case III. There is
In summary, we take
and
Then
and
are two fundamental solution matrices of the second equation in (3.3). Thus
is the fundamental solution of the homogeneous system (3.1).
Proof of Lemma 3.2.
Consider the relationship of λ and σ undergoing three cases:
Step I. If
and
Let
then
Step II. If
and
Let
then
Step III. If there is
and
Let
then
For
Finally, let
This completes the proof.
References
1. N. Bellomo, P. Degond and E. Tadmor (Eds.), Active Particles Vol. I: Advances in Theory, Models, and Applications, in: Modelling and Simulation in Science and Technology, Birkhäuser Basel (2017), 299–331.10.1007/978-3-319-49996-3Search in Google Scholar
2. F. Cucker and J. Dong, A general collision-avoiding flocking framework, IEEE Trans. Automat. Control, 56 (2011), 1124–1129.10.1109/TAC.2011.2107113Search in Google Scholar
3. F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862.10.1109/TAC.2007.895842Search in Google Scholar
4. F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197–227.10.1007/s11537-007-0647-xSearch in Google Scholar
5. J. Dong, S. -Y. Ha, D. Kim and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations (2019), 10.1016/j.jde.2018.08.034.Search in Google Scholar
6. A. Jadbabaie and J. Lin, Coordination of groups of mobile autonomous agents using nearest neighbour rules, IEEE Trans. Automat. Control, 48 (2003), 988–1001.10.1109/TAC.2003.812781Search in Google Scholar
7. C. Jin, Flocking of the Motsch-Tadmor Model with a Cut-Off Interaction Function, J. Stat. Phys., 171 (2018), 345–360.10.1007/s10955-018-2006-0Search in Google Scholar
8. Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156–3174.10.1137/100791774Search in Google Scholar
9. Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53–61.10.1016/j.jmaa.2014.01.036Search in Google Scholar
10. Y. Liu and J. Wu, Local phase synchronization and clustering for the delayed phase-coupled oscillators with plastic coupling, J. Math. Anal. Appl., 444 (2016), 947–956.10.1016/j.jmaa.2016.06.049Search in Google Scholar
11. Y. Liu and J. Wu, Opinion consensus with delay when the zero eigenvalue of the connection matrix is semi-simple, J. Dyn. Diff. Equns., 29(4) (2016), 1–13.10.1007/s10884-016-9548-0Search in Google Scholar
12. A. Masoumeh, T. H. B. Mohammad and T. Babak, Design of proportional-derivative-type state feedback controllers for congestion control of transmission control protocol networks, International Journal of Systems Science, 46(10) (2015), 1774–1779.10.1080/00207721.2013.835002Search in Google Scholar
13. M. Morteza, A. Hajar, M. Noushin and A. Farzaneh, Asynchronous consensus of continuous-time Lagrangian systems with switching topology and non-uniform time delay, Robotics and Autonomous Systems, 83 (2016), 106–114.10.1016/j.robot.2016.05.014Search in Google Scholar
14. S. Motsch and E.Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923–947.10.1007/s10955-011-0285-9Search in Google Scholar
15. C. Pignotti and I. Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313–1332.10.1016/j.jmaa.2018.04.070Search in Google Scholar
16. L. Ru and X. Xue, Multi-cluster flocking behavior of the hierarchical Cucker-CSmale model, J. Franklin Inst., 354 (2017), 2371–2392.10.1016/j.jfranklin.2016.12.018Search in Google Scholar
17. C. G. Rudy and O. Nejat, A consensus protocol under directed communications with two time delays and delay scheduling, International Journal of Control, 87(2) (2014), 291–300.10.1080/00207179.2013.829605Search in Google Scholar
18. S. S. Samer and H. J. Rayana, A proportional-derivative-double derivative controller for robot manipulators, International Journal of Control (2019), 10.1080/00207179.2019.1642518.Search in Google Scholar
19. D. Serre, Matrices. Graduate Texts in Mathematics 216. Springer (2010).10.1007/978-1-4419-7683-3Search in Google Scholar
20. J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694–719.10.1137/060673254Search in Google Scholar
21. T. Vicsek and A. Zafeiris, Collective motion, Physics Reports (2012).10.1016/j.physrep.2012.03.004Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston