2023 Volume E106.B Issue 2 Pages 109-116
Multiple wireless communication systems are often operated together in the same area in such manufacturing sites as factories where wideband noise may be emitted from industrial equipment over channels for wireless communication systems. To perform highly reliable wireless communication in such environments, radio wave environments must be monitored that are specific to each manufacturing site to find channels and timing that enable stable communication. The authors studied technologies using machine learning to efficiently analyze a large amount of monitoring data, including signals whose spectrum shape is undefined, such as electromagnetic noise over a wideband. In this paper, we generated common supervised data for multiple sensors by conjointly clustering features after normalizing those calculated in each sensor to recognize the signal reception timing from identical sources and eliminate the complexity of supervised data management. We confirmed our method's effectiveness through signal models and actual data sampled by sensors that we developed.