2024 Volume E107.A Issue 1 Pages 31-37
In a multi-agent system, it is important to consider a design method of cooperative actions in order to achieve a common goal. In this paper, we propose two novel multi-agent reinforcement learning methods, where the control specification is described by linear temporal logic formulas, which represent a common goal. First, we propose a simple solution method, which is directly extended from the single-agent case. In this method, there are some technical issues caused by the increase in the number of agents. Next, to overcome these technical issues, we propose a new method in which an aggregator is introduced. Finally, these two methods are compared by numerical simulations, with a surveillance problem as an example.