
Exploiting Coordinated Views for Scholarly
Reading and Analysis

Francesco Poggi
∗Dept. of Computer Science and Engineering

University of Bologna, Italy
francesco.poggi5@unibo.it

Paolo Ciancarini
∗Dept. of Computer Science and Eng.
Universities of Bologna and Innopolis

paolo.ciancarini@unibo.it

Angelo Di Iorio
∗Dept. of Computer Science and Eng.

University of Bologna, Italy
angelo.diiorio@unibo.it

Silvio Peroni
†Dept. of Classical Philology and Italian Studies

University of Bologna, Italy
silvio.peroni@unibo.it

Fabio Vitali
∗Dept. of Computer Science and Eng.

University of Bologna, Italy
fabio.vitali@unibo.it

Abstract— There are several ways of reading scientific papers,
and in general, documents. The sequential reading of the text
flow can be complemented with alternative visualizations such
as tree-based views, maps and charts. Infoview techniques are
very promising in this context but not yet fully exploited.
This paper presents a system called DocuDipity that is able to
smoothly integrate infoview techniques, in particular a SunBurst
visualization and a flow text reader, in a coordinated environment
that helps researchers to read and analyze scientific articles.
We discuss some end-user tests that showed that our tool is
highly effective to find patterns and disclose some habits in
writing articles. For instance, we used DocuDipity to study
how the authors organise their content and use citations. The
paper presents both the system and the details of the evaluation,
together with some indications on future developments.

Index Terms—Document visualization, information interfaces
and presentation, scholarly articles, structural patterns, sunburst

I. INTRODUCTION

In the last three decades, the advent of the World Wide
Web and the consequent development of hypermedia content
has produced a profound impact in the way people access,
use and consume information. This fundamental shift has also
involved the way researchers access scholarly information. For
instance, the results of a study based on surveys performed
in time span of more than 30 years show that the average
number of readings per year per science faculty member
continues to increase, while the average time spent per reading
is decreasing[1][2]. The fact that the amount of time available
for reading scientific articles is likely reaching a maximum
capacity poses challenging issues.

Things are even more complex as scholars read documents
in many different ways, depending on the goal they want to
achieve and the time they can spend,our assumption is that
they need different tools.

In some cases scholars need to scan documents thoroughly,
nitpicking every single word and character; in others, a bird’s
eye view is enough: they browse pages, searching relevant

DOI reference number: 10.18293/DMSVIVA2019-021

parts, or they jump to specific sections, starting from the
table of content. Consider for instance the citations. Incoming
citations are checked for evaluation purposes: we just count
them to measure the impact of a paper, and, as a consequence,
of a given researcher. When we review a paper, instead, we
also look at outgoing citations so as to evaluate if it is up-to-
date and fits a given research area. We might also scan self-
citations in order to get indications about the relevance and
impact of that work. It is also common to identify the citation
context (the sentence in which a work is cited) or the citation
function (the reason why a work is cited) to better characterise
and weight citations. A full analysis of the citations requires
researchers to scan documents. To do so, the readers jump
from the text of the paper to the bibliography, alternating
focused readings to overview readings, and moving from one
part to another.

The heterogeneity of these reading patterns is the main
focus of this work. We limit the concept to the definition of
Hornbæk et al. in [3]: ”how readers navigate and manipulate
documents as they try to accomplish their aims with reading.”

Our results are directly connected to those of [3]. The
authors investigated the support provided by a representative
set of visualization tools to scholars in their reading and
analysis activities. Three interfaces were compared in the
study: a linear interface (where a document is shown as a linear
sequence of text and pictures), a fisheye interface (where the
document parts considered of minor importance are initially
distorted below readable size, but can be expanded and made
readable if the user clicks on them with the mouse) and
an overview+detail interface (where a linear interface called
detail pane is complemented on a side by an overview of the
document, that can be used navigate the document - by moving
the viewport of the detail pane).

The users of the experiment were asked to perform two
types of tasks (i.e. writing an essay and answering questions)
on the same set of documents using the three aforementioned
interfaces. Experimental results show that the linear interface
is in many ways inferior with respect to other ones: it has the

lowest satisfaction and usability scores, and leads to lower
essay grades. The fisheye interface is the fastest interface,
but subjects using it obtained lower incidental learning scores,
resulting in outcomes of lower quality. The conclusion is that
the fisheye interface is more appropriate for tasks where a
detailed understanding of documents is not the main aim (e.g.
relevance judgements in information retrieval systems). The
overview+detail interface led to the highest quality outcomes,
and subjects strongly preferred this interface. However it
was slow for question-answering tasks. The authors explain
this fact with the overall higher affordance of this interface,
which engages users and encourages them to perform deeper
analyses. In fact, the study of the experiment logs showed that
users spent more time to further explore the document after
the first contact, and also that - on average - these explorations
took more time than in the other interfaces. In other words,
the frequency and duration of further explorations are higher
than those of the counterparts, increasing the quality of the
results.

The basic idea of our work is to improve the
overview+detail approach by combining coordinated views so
as to help researchers to discover traits of the scientific articles,
without necessarily reading their full content. The system
we present here, called DocuDipity2, combines the hypertext
flow layout of the article, in which readers can scroll the
sequential content of the paper and read it, with a novel way
of displaying tree-based documents, in particular XML ones,
based on SunBurst visualization [5]. SunBurst is a form of
radial visualization designed for depicting and summarizing
in a very compact form even complex information hierarchies.
Initially proposed to surf filesystems, SunBurst tools have been
applied to various contexts, e.g. for summarizing navigation
paths [6] or showing firewall configurations [7]. However, to
the best of our knowledge, it has not been used in document-
centric systems as the one we propose in this paper.

The main contribution of this work is, in fact, to demonstrate
how the SunBurst visualization can be successfully combined
with the flow layout in order to help scholars in their tasks. Our
goal is not only to confirm the exploitability of the SunBurst
but also the strengths of coordinating these two views in a
single integrated environment that allows readers to easily
access different aspects at different levels of the same paper.
DocuDipity is also highly customizable, since it relies on
editable rules that can be shared and refined by the users.
This paper presents a set of rules, but the system is totally
independent from them, and can be extended to carry out other
analyses.

This paper describes the system and some experiments in
either using the pre-loaded rules or writing new ones. We
tested DocuDipity with 25 users studying the articles’ internal

2The name DocuDupity stresses on the serendipity of the system and
its ability to make unexpected behaviors emerge, following the Kingrey’s
definition of information seeking[4]: ”information seeking involves the search,
retrieval, recognition, and application of meaningful content. This search may
be explicit or implicit, the retrieval may be the result of specific strategies
or serendipity, the resulting information may be embraced or rejected, ... and
there may be a million other potential results.”

structures and hierarchical organization, the self-citations, and
some writing styles and authoring habits. The results of the
test proves that DocuDipity is effective and usable. Some
limitations still exist when editing rules but the overall users’
perception was very good, as detailed in the experiments
section.

The rest of the paper is organized as follows. Section II
describes some related works, focusing on similar visualiza-
tion techniques. Section III presents our solution in detail.
Section IV describes how DocuDipity, and in particular its
rule-based engine, can be used to support document readings
and analysis, together with some examples of applications
and findings. The experimental evaluation is presented in
Section V, while some discussions and conclusions are in
Section VI.

II. RELATED WORKS

One of the most popular principle in visual analytics tools
is to provide an overview of the entire information space,
so as to give users the context to support their browsing
and search tasks[8]. This principle is at the base of many
visual analytics systems such as Jigsaw [9], a popular tool
that provides coordinate views for investigating concepts (e.g.
places, persons, dates, etc.) extracted from text reports. A
good overview about these technique is provided by [10].
Only a few works explored the application of this principle
for supporting non-linear reading paths in large document
collections. Most of them focused on supporting the navigation
between documents in large document collections, or searches
within a set of predefined keyword/features [11] [12] [13].

Another relevant issue concerns how to visualize the logical
structure of a document. This problem may be reduced to
the well-known problem of visualizing hierarchies. In times
where typical data sizes grow much faster than the available
screen sizes, a first element to consider is the efficient use of
space. For this reason, implicit hierarchical visualizations (i.e.
those that resort to an implicit representation of parent-child
relations by positional encodings of the hierarchy items) must
be preferred to explicit techniques (i.e. those that explicitly
show parent-child relations as straight arcs or lines) [14].

One of the first and more popular alternatives is the
Treemap [15], a space-filling slice-and-dice technique based
on a rectangular layout. In a treemap, each element of a tree
is depicted by a rectangle, which is then tiled with nested
rectangles representing sub-branching. The color and area of
each item correspond to attributes of the item as well: for
example, these visual variables may be used to encode the
type of the element and the number of contained characters,
respectively. A plethora of variations and improvements of the
initial treemap techniques have been proposed over the years
in the literature (e.g. 3D Treemap [16], Triangular Aggregated
Treemap [17], Quantum Treemap [18], Cascaded Treemap
[19], etc.). For representing document information, one of the
most suitable alternatives is specific kind of Treemap named
Ordered Treemap [20], since it has the property of preserving
the order within the document hierarchy.

The SunBurst technique [5], which we adopted in our
tool, is another relevant alternative based on a space-filling
visualization approach that uses a radial layout to represent
tree-like structures. In SunBurst, items in the hierarchy are
laid out radially, with the root element at the center and deeper
levels further away from the center. Comparing Treemap and
SunBurst, the former has a longer learning curve and a less
explicit portrayal of the hierarchy structure, as described in [6].
Apart from these two techniques, which are the most relevant,
a wealth of implicit tree visualizations have been proposed in
the last 30 years. A summary of these methods and approaches
are described in [21].

Widening the scope of the analysis without limiting to
implicit techniques, a quite complete catalog3 of tree visu-
alization techniques is presented in [22]. Two of the most
notable examples that apply such a tree-based visualization
to documents are the Cone Tree [23] and Hyperbolic Tree
[24]. Cone Tree is one of the first focus+context technique that
embeds the tree in a three dimensional space. An expensive
3D animation support is required, since the tree has joints
that can be rotated to bring different parts of the tree into
focus. Another limitation of Cone Tree is its scalability: in fact,
trees with more than 1000 nodes are difficult to manipulate.
The Hyperbolic tree is the two dimensional counterpart of
Cone Tree. The basic idea is to use a radial layout, and put
the nodes in focus in the center, while out of focus ones are
compressed near the boundaries. A better use of space, and
the relatively modest computational needs, makes Hyperbolic
tree potentially useful on a broad variety of platforms.

More recently, document visualization research has focused
on the development of tools and techniques to support specific
task relevant to document analysis. Usually, these tools require
a pre-analysis of text to extract and compute a set of relevant
features, that are given as input to an engine that produces a
visual representation of the document based on them. For ex-
ample, in [25] Kleim et al. used a pixel-based technique, which
they call “literature fingerprinting”, to understand and visualize
document signatures, such as vocabulary richness and sentence
length. Three coordinated views of document are provided to
explore the feature values of text corpora at different levels
of detail. Another notable example is DocuBurst [26], which
infers word relationships within documents by traversing the
WordNet hypernym graph, and applies a radial layout to show
the word hierarchy.

III. DOCUDIPITY

In this section we describe DocuDipity 4, the interactive
web-based tool we developed to support the exploration and
analysis of heterogeneous document collections.

The DocuDipity interface is composed of four main parts,
as shown in Figure 1. The navigation bar on the top lets users
select the document to investigate, whose content is presented
in the two different and coordinated forms in the central area.

3The interested reader can find an interactive catalog of the tree visualiza-
tion techniques at the address http://treevis.net.

4DocuDipity is available online at http://eelst.cs.unibo.it/docudipity2

On the left, a view based on the SunBurst technique provides
a summarization of the document structure, while on the right
side the content of the document is displayed as an hypertext.

Finally, users can select coloration rules to highlight relevant
features and patterns in the document under investigation.
Each rule changes the color of some selected elements in
the document. users can modify or create their custom rules
to support personal investigations, and interactively evaluating
them on-the-fly. Rules are written in Javascript and CSS and
will be briefly described below.

It is worth noting that DocuDipity is a general tool that can
work on any XML document, without requiring any back-
ground information about the format documents are written
in. In fact, the DocuDipity engine is based on the structural
pattern theory[27]. By leveraging the pattern identification
algorithm described in [28], DocuDipity is able to extract rel-
evant information about the structure of the set of documents
provided as input, and use it (a) to visualise the documents and
(b) to provide an analysis framework to inspect their content
easily.

A. FullText View

The FullText view provides a classical reading environment
where the content of the document is shown as an hypertext.
As all the other DocuDipity components and features, also
this view is generated through an automatic analysis and
segmentation of the document. The model of the document
under investigation used by DocuDipity engine is based on
the theory of structural patterns [27] and any textual document
encoded in XML can be loaded into DocuDipity.

To generate the hypertextual representation of documents,
DocuDipity converts XML documents into HTML composed
of generic containers, blocks and inlines associated with some
JavaScript code and CSS rules. For instance, the Fulltext
view highlights the logical structures of the document (e.g.
headings, sections, subsections, paragraphs, text fragments,
structured data, etc.). References to figures, tables and biblio-
graphic items are converted into hyperlinks, and other elements
(e.g. blockquotes, footnotes, etc.) are collapsed and can be
expanded on request. DocuDipity also leverages the pattern-
based analysis to automatically generate the table of contents
shown at the beginning of the document.

B. SunBurst View

DocuDipity uses the SunBurst technique [5] for providing
an explicit but at the same time very compact view of the
overall structure of documents. In the SunBurst, items in
the document hierarchy are laid out radially, with the root
element at the center and deeper levels farther away from
the center. In addition to containment, the SunBurst view also
preserves information about the element order, by starting to
draw elements from midnight, and proceeding clockwise.

Other graphical attributes are used to highlight other in-
formation about the document under focus. For example, the
angle swept out by each element corresponds to the number
of characters contained, even recursively, by it.

Fig. 1: An overview of the DocuDipity interface. The user’s analysis starts with the selection of the document to investigate (top
area), whose content is displayed with the SunBurst technique (center left) and as an hypertext (top right). In the area in the
bottom, users can select predefined coloration rules to highlight relevant document features, or edit new ones and interactively
evaluate them on-the-fly.

The SunBurst view has been chosen among the others
representing tree structures (e.g. direct graphs, treemaps, etc.)
for two main reasons: (i) because it is a space-filling technique
that provides a very compact summarization of the document
structure, and (ii) because it is more effective and easy to
learn (i.e. it has a shorter learning curve) than the other main
alternatives [6].

The default coloration rule highlights the most relevant com-
ponents of the document (i.e. sections, bibliography, metadata,
paragraphs, citations, etc.). The document in Figure 1 for
example, after an initial metadata section (in orange) contains
nine sections (in blue: three quite short at the beginning,
followed by two longer in the middle of the document, and
four very short at the end), and a quite long bibliography (in
pink). No citations are contained in the second part of the

document (they are spread equally in the first four sections,
plus two at the beginning of the fifth one). Users can switch
between rules to analyze different aspects of the document,
looking at the SunBurst view.

C. Coordinated Behaviours

The SunBurst view and the FullText view are coordinated
during the user’s investigation: when he/she clicks on an
element in the SunBurst view, the FullText view scrolls to
the corresponding element. Moreover, when the user hovers
the mouse cursor over a text fragment in the hypertext view
on the right, both (i) the text fragment in the hypertext view
and (ii) the corresponding element and all its ancestors in the
document hierarchy on the left are highlighted; similarly, when
a user focuses on an element in the SunBurst view, the cor-

responding element in the hypertext view is highlighted. The
coordination between these two views is crucial in DocuDipity,
since it facilitates customized and personal investigations of
document collections. The SunBurst view provides a compact
overview of the document, and users can easily jump into
the details of the document (e.g. by reading a text section in
the FullText view) without losing the overall context. This is
fundamental for supporting readings that are different from
sequential ones, providing at the same time a general view
and a more detailed one, and allowing users to jump among
them.

This behavior is based on the so-called information-seeking
mantra ”overview first, zoom and filter, then details-on-
demand” [29]. The idea is to develop interfaces that give a
general context for understanding datasets by summarizing
their most salient features (overview), reduce the complexity
of the representation by removing extraneous information from
the view and allowing for further data organization (zoom and
filter), and finally reveal additional information on a point-
by-point basis while the user interacts with the visualization
(details-on-demand).

An important issue faced during DocuDipity development
is that, as the document hierarchy grows in size, many items
in the SunBurst view become small and peripheral slices are
difficult to distinguish. Also this problem has been solved
using interaction by allowing users to zoom in and out: when
users double-click on an element, the SunBurst is re-drawn
to show only the subtree rooted in that element (zoom in); to
move up one step in the hierarchy, users can double-click on
the central circle (zoom out).

D. Editing Coloration Rules

In the bottom area DocuDipity provides an editing area
where users can define coloration rules that can be applied to
the SunBurst view to highlight relevant features and patterns
in the document under investigation. To this end, users need
a language to translate their hypotheses into (even complex)
conditions, and a method to verify their validity. Instead of
creating new languages and tools from scratch, we decided to
use well-known web technologies like JavaScript and CSS.

By switching on the ”Edit” tab, two textual areas are shown
in the bottom of the DocuDipity interface, as shown in Figure
2. In the former one, the user can use JavaScript (in particular
JQuery 3) to select elements and to assign CSS classes to them.
In the latter one, the user can define CSS rules to specify
a style for the classes assigned by the JavaScript code. To
facilitate the development of new rules, users can also inspect
the XML source of the current document by clicking on the
”inspect XML” button.

For example, the following excerpt is the JavaScript code
for coloring paragraphs according to their length. This code
assigns the class para-short to short-length paragraphs
(i.e. containing less than 400 characters), para-medium to
medium-length paragraphs (i.e. containing between 400 and
799 characters), and para-long to long-length paragraphs
(i.e. containing more than 800 characters).

1 var l i m i t S h o r t = 400 ;
2 var l i m i t L o n g = 800 ;
3 // Selects all the paragraphs
4 var t o F i l t e r = $ ('para') ;
5 // evaluates the provided function over

each paragraph
6 t o F i l t e r . e a c h (f u n c t i o n () {
7 // Counts the characters contained in
8 // the current paragraph
9 var t e x t L e n g t h = $ (t h i s) . t e x t () . l e n g t h ;

10 // Tests if the current paragraph is
11 // short, medium or long, and assigns
12 // the appropriate CSS class
13 i f (t e x t L e n g t h < l i m i t S h o r t) {
14 $ (t h i s) . a d d C l a s s ('para-short') ;
15 } e l s e i f (t e x t L e n g t h >= l i m i t S h o r t &&
16 t e x t L e n g t h < l i m i t L o n g) {
17 $ (t h i s) . a d d C l a s s ('para-medium') ;
18 } e l s e i f (t e x t L e n g t h >= l i m i t L o n g) {
19 $ (t h i s) . a d d C l a s s ('para-long') ;
20 }
21 }

The following CSS rules associate colors to the elements
belonging to one of the previously defined classes(i.e. green to
short-length paragraphs, yellow to medium-length paragraphs,
and red to long-length paragraphs), and paint lightgray all the
remaining elements.

1 p a t h { f i l l : l i g h t g r a y ! i m p o r t a n t ; }
2 p a t h . p a r a− s h o r t { f i l l : g r e e n ! i m p o r t a n t ; }
3 path .para−medium { f i l l : y e l l o w ! i m p o r t a n t ; }
4 p a t h . p a r a− l o n g { f i l l : r e d ! i m p o r t a n t ; }

By clicking on the ”view” button, DocuDipity evaluates
both the edited JavaScript and CSS fragments over the docu-
ment under focus, and updates the SunBurst view.

IV. READING AND EXPLORING SCHOLARLY ARTICLES
WITH DOCUDIPITY

In order to showcase DocuDipity we deployed a test instal-
lation on a collection of 211 papers from a niche computer
science conference, called Balisage Markup Conference 5,
active for more than 20 years, whose collection of papers
is publicly available in XML format since 2008. The same
installation has been also used for the use-case study described
in Section V.

We loaded an initial set of rules covering some common
tasks that researchers already perform today by combining
different reading patterns. These rules are not meant to be ex-
haustive but to give readers indications about the potentialities
of the tool.

The following coloration rules are currently available:
• Document overview: this view highlights the main docu-

ment components (e.g. sections, metadata section, para-
graphs, bibliography, citations, etc.);

• Citations: this view help users to study citations networks
by highlighting the position of the citations (i.e. reference
in the text of the paper pointing to a bibliographic entry);

5The complete proceedings of the conference are freely available online at
the address http://balisage.net/Proceedings/index.html

Fig. 2: The editor panel to define custom coloration rules.

• Self-citations: this extends the previous one by distin-
guishing between generic citations and self-citations (i.e.
references in the text the paper pointing to a bibliographic
entry authored by one of the authors of the current paper);

• Paragraphs length: this view helps users to study differ-
ent writing styles by using different colors to highlight
short, medium and long paragraphs;

• British vs American English: this view help users to
distinguish the sentences containing American English
spellings and peculiarities (e.g. airplane), from the ones
containing British English forms (e.g. aeroplane), or a
mix of them.

We discuss two coloration rules here but similar considera-
tions can be generalized to all others and to new ones.

A. Citation analysis

Let us consider, first of all, the use of citations. While
reading a new paper, citations are primary tools to find related
works and to quickly get an overview of the research space
around the paper. Though citations are often aggregated in
related works section, this is not always the case. In some
disciplines authors tend to aggregate citations in the introduc-
tion, in some others to scatter them throughout the paper. The
SubBurst view is very effective to locate citations and to go
the relevant part of the paper. Consider now the review process
of an article or a report: reviewers often check, for instance,
the number of self-citations or the publication year of the cited
paper or even the publication venue. Instead of reading the flat
bibliography, a reviewer could exploit the SunBurst view to
get this information and then continue reading, even jumping
to the citation she/he thinks is more interesting and worth
checking.

Given our research interests in citation networks for schol-
arly communications [30][31], we experimented a few DocuD-
ipity rulesets that illustrate the positioning of citations (xref
elements in the Balisage XML) within documents, and we
found interesting and different patterns in how citations scatter
in the sections.

A glimpse to the DocuDipity SunBurst chart can tell us
immediately about how the paper is structured. For instance,

we can immediately observe structures where:

• authors use citations to provide the scaffolding and con-
text of their own contribution, by collecting most of
them in an initial section before introducing the core
contribution, as in Fig. 3a; or

• authors use citations to provide a final comparison of their
contribution against similar other ones in the relevant
literature by collecting most of them in a section at the
end, as in Fig. 3b; or

• authors scatter citations throughout the paper, so as to
signify a continuous and meticulous dialogue between
the contribution and the literature, as in Fig. 3c; or, even,

• authors (possibly practitioners, rather than scholars, not
versed in the habits of scholarly communication?) that
provide a rich set of citations in the final references
section... totally not cited in the body of the paper, as
in Fig. 3d.

B. Content and style analysis

The stylistic and linguistic analysis of an article is another
peculiar task of scholars when writing their own articles, or
when giving feedback to other colleagues, or when reviewing
articles for a conferences or a journal. Such an analysis goes
with the actual content reading, which is and has to be a
personal activity of the scholar. On the other hand, DocuDipity
can be exploited to automatically identify some features of the
article under evaluation.

For instance, we could consider the length of individual
paragraphs mentioned in the previous Section and color gray
the paragraphs that are about average, red the paragraphs
that are much longer than average, and green the paragraphs
that are way shorter. Is is easy to identify authors whose
style uses long, winding, multi-conceptual paragraphs (e.g.,
in Fig. 4) from authors preferring paragraphs with short
individual sentences straight to the point (as the one in Fig. 5).

So what happens if you point the rules to a paper with
multiple authors? Maybe you could distinguish the individual
contribution of one author having a writing style different from
the others, as in Fig. 6.

(a) The DocuDipity visualization of a paper with citations (i.e. purple
slices) grouped in the initial part of the document. This writing style
is common in the humanities.

(b) The visualisation of a paper with a ”Related Works” section at the
end (top-left corner of the SubBurst).

(c) A paper with citations scattered throughout the body of the paper.
This writing style is common in scientific articles.

(d) The visualization of a paper that contains plenty of bibliographic
items in the bibliography section (in pink), none of which is mentioned
in the document body. The SunBurst clearly shows an incomplete usage
of XML for marking citations.

Fig. 3: Plots of papers where citations highlights different styles and structures

Fig. 4: A paper made of mostly long paragraphs (in red). The
paper was written by a non-native English speaker.

Fig. 5: A paper made of mostly short paragraphs (in green).
The paper was written by an English native speaker, and is
fluid and easy to read.

Fig. 6: A paper by multiple authors with a striking difference
in the length of the paragraphs, possibly pointing out the
individual style of one of the authors. The introduction (shown
in the top-right corner) was in fact written by an author, who
only worked on that section and whose style is more verbose
than that of the others’.

Fig. 7: A paper with a mix of American (in red) and British
(in blue) words within – the inner circle are the first level
section of the paper. The colour green is used when a section
and/or paragraph has been written according to both UK and
US English.

Or maybe, you could find yourself examining a multi-author
paper by non-native English speakers, one of whose authors
takes pride in his English, learnt during his post-doc station at
the Oxford University, while the others have gotten theirs from
the usual mish-mash of styles gained from magazines, blogs,
novels, and Hollywood movies, plus the peculiar international
English of scientific literature. Point DocuDipity over that
paper, add rules that distinguish American English versus
British English spelling and peculiarities, such as the -ise/-
ize endings6, and presto: you can immediately find out which
sections were written by one individual and which by the
others, as in Fig. 7.

V. EVALUATION

We performed some end-user tests in order to evaluate
DocuDipty and to identify its main strengths and weaknesses.
Following the ISO 9241 standard7, we measured the system in
terms of efficacy, efficiency and satisfaction. The tests involved
25 users in total, with different backgrounds and expertises,
and was split in two parts. In the first test we measured
how DocuDipity can support researchers to explore scientific
papers by using the rules already available in the system,
and involved 20 users. In the second one we asked the other
five (more expert) testers to add new rules to DocuDipity
and to employ them for further analysis. These two parts are
discussed separately in the following subsections.

A. Using DocuDipity

The first test was further split in two parts. We divided
the 20 participants in two groups, each formed by 10 testers
equally distributed in terms of professional level and skills.
Each group was asked to analyze a set of scientific articles
and complete two assignments. The source articles were 184
in total, taken from 7 different editions of the Balisage Markup
Conference Series8.

The first group was asked to use DocuDipity to complete
the tasks, while the second could only use the official Balisage
web site (where the articles are freely available). The site
contains one web page for each article with a sidebar showing
a clickable table of content. It is worth remarking that the two
groups were given the same input data and tasks, so as to
compare their behaviors.

The real test was preceded by a warm-up session, in which
the testers were asked to complete a simple task so as to
become confident with the platform they were about to test. In
the case of DocuDipity, the users were also shown a 5-minutes
demo of the system. After completing the two assignments, the
participants were asked to fill some questionnaires about their
experience, in the form of closed and open questions.

The assignments are summarized below. Each of them was
repeated on three different articles:

6Remembering also that some words, such as devise, do not have spellings
in the two dialects...

7https://www.iso.org/standard/16883.html
8The proceedings of the Balisage Series Conferences are freely available

at http://www.balisage.net/

TABLE I: Execution time for each subtask.

T1.1 T1.2 T1.3 T2.1 T2.2 T2.3

DocuDipity 2:38 0:38 1:00 1:15 1:16 1:32

Balisage 4:51 4:22 2:06 5:09 7:02 3:13

TABLE II: The percentage of testers who answered correctly
for each subtask.

T1.1 T1.2 T1.3 T2.1 T2.2 T2.3

DocuDipity 80% 80% 90% 100% 40% 60%

Balisage 40% 10% 30% 20% 0% 10%

T1. Study self-citations: given the title of a paper, the
testers were asked to indicate how many self-citations
it contains. We expected users to search a paper by
title and to inspect both the bibliography section and
the citations in the text. Note that the complexity of the
task depends on the number of authors of the paper. For
instance, if we just look for authors’ surnames in the
bibliography, in a paper written by dozens of authors
(which is not unusual in some disciplines like physics)
the task would require to manually repeat the search
for each author. Moreover, it would be important to
count self-references only once in case of multi-authored
papers.

T2. Study length of paragraphs : the testers were asked
to find the paragraphs whose length is under/over/in-
between a given threshold. They were expected to check
the length of the paragraphs by counting characters,
manually or with an external tool.

Details of each evaluation are presented below:
1) Efficiency: We first measured how much time was

needed by the testers to complete the tasks, comparing the
users’ performance with or without the help of DocuDipity.
Table I shows the average execution time of the two tasks.
For each task, we report the execution time on three different
papers. As expected, a specialized tool like DocuDipity out-
performed the plain sequential reading of the Balisage web
site content. The difference however is significant and worth
remarking.

2) Efficacy: We also studied if the testers could complete
the tasks correctly, by manually comparing the answers given
by each tester to the expected answers. Though some partici-
pants failed to complete some tasks, the overall efficacy was
very high for DocuDipity. On the other hand, the efficacy of
searching the same information on the plain web site was very
low. Table II summarizes our results. The difference is evident,
even more than we expected.

The efficacy of DocuDipity on assignment T1 (self-
citations) was very high on all three papers taken into account.
The interpretation of one specific user lowered the three scores
of 10%. In fact she/he failed all three questions but in a
consistent way: each self-citation was counted twice since the
SunBurst visualization, in presence of a self-citation, colored

TABLE III: Comparison of the SUS scores for the tests
performed with DocuDipity and Balisage

TestSet n Mean SD t df p 95% CI

DocuDipity 10 81 10.29 - - - -

Balisage 10 64.25 7.17 - - - -

Total 20 68.13 9.04 3.92 16 .0012 7.83 - 26.27

in red both the segment corresponding to the XML element
and the segment corresponding to its textual content. For Task
1.1, for instance, the given answer was 4 while the correct
one was 2. This suggests us that a clearer coloring scheme
is needed for segments corresponding to text fragments. We
do not have further elements to speculate on the other wrong
answers, given by two other different users.

The results on Docudipity were less positive for Task 2
(length of the paragraphs). Apart from T2.1, whose percentage
of success was 100%, the efficacy goes much lower for T2.2
and T2.3. The reason is that most testers had difficulties in
manually counting the number of paragraphs highlighted in
the SunBurst. They confirmed us that the visualization was
clear but they got confused while counting the SunBurst slices.
In fact, as discussed later, most of the testers suggested us to
add counters and summaries of the results in the DocuDipty
interface. Though not shown in the table, note also that the
deviation between the wrong and correct answers was very
low. Consider for instance T2.2: the correct answer was 19,
while 30% of the users answered 18 and 10% answered 16.
This confirms the difficulties that the testers experienced while
counting the items. As expected, such difficulties are accentu-
ated without the help of a specialized tool like DocuDipity.

3) Usability: After the completion of all assignments, the
testers were asked to fill two questionnaires. The first one
was a System Usability Scale (SUS) [32], a well-known
questionnaire used for the perception of the usability of a
system. It has the advantage of being technology independent
and it is reliable even with a very small sample size [33].
The mean SUS score for DocuDipity was 81 (in a 0 to 100
range). The value shows how the users’ satisfaction was very
high, confirming that the coordinates views and the SunBurst
visualization are well accepted by the testers.

In addition to the main SUS scale, we also examined the
sub-scales of pure Usability and pure Learnability [34]. They
gave us a more precise characterization of the users’ feedback.
The mean values for Usability was 81 and Learnability was
82. This means that the system was perceived both easy to
learn and effective in supporting users to perform their tasks.

We also repeated the SUS test for the plain Balisage web
site, just to compare this score and the DocuDipity one. In
fact, the difference was very high: 64 against 81, which is
statistically significant according to an unpaired student t-test
(t = 3.92, p <0.01) as shown in Table III.

In order to go deeper, we also included four open questions,
only to the testers that used DocuDipity:

• What were the most useful features of DocuDipity to help
you realise your tasks?

• What were the main weaknesses that DocuDipity exhib-
ited in supporting your tasks?

• Currently Docudipity includes a limited set of analysis
rules. Can you think of any additional one(s) that would
be useful/interesting for you?

We subjected the text answers to a grounded theory analysis.
Grounded theory [35] is a method often used in social science
to extract relevant concepts from unstructured corpora of nat-
ural language resources. In opposition to traditional methods
aiming at fitting (and sometimes forcing) the content of the
resources into a predefined model, grounded theory aims at
having the underlying model emerge bottom-up. We proceeded
first with open coding, with the purpose of extracting actual
relevant sentences – called codes – from the texts, and sub-
sequently performed the so-called axial coding, which is the
rephrasing and aggregation of original codes in concepts.

Figure 8 shows the concepts we extracted. The size of each
bar depends on the number of codes which contributed to the
corresponding concept. Note that the codes mentioned by less
than two users were not taken into account.

Fig. 8: The codes mentioned by at least two users, ordered by
their frequency and grouped in positive and negative codes

The Figure is actually split in three parts. The top area
contains the aspects rated as positive by the testers, followed
by the negative aspects and, at the bottom, some mixed notes
about the use of the colours in DocuDipity. The overall users’
perception was very good, considering that the total number
of positive codes is significantly more than the negative ones.

In particular, the testers appreciated the presence of the
SunBurst view labelling it as a very effective tool for the
proposed tasks. The coexistence of multiple views was also
considered a further strength of DocuDipity, together with the
possibility of zooming into the document’ components and
navigating the tree XML structure in an alternative way. This
confirms our initial assumption that mixing plain text reading
and infoview techniques is a valuable tool for scholars.

An element that we expected to be more appreciated by
the testers is the synchronization between the two DocuDipity
views. However, only two testers stressed its importance,

while all others used both views but never together: when
looking a SunBurst segment, for instance, they did not read
the corresponding element in the text flow. The possibility of
customizing views and modifying rules was instead enjoyed
by some more testers. The result is not optimal, we speculate,
because the editing of the DocuDipty rules is not simple (as we
will discuss later) and hinders the full exploitation DocuDipity.

The plot also shows that the main weakness of DocuDip-
ity is the interface to surf conferences and papers. In fact,
DocuDipity requires users to scan the list of conferences, load
papers and then scan the list of the papers. This caused some
confusion and impacted negatively on the feedback given by
the testers. Most of them suggested us to include a search by
title option. This was already in our plan but we had preferred
to focus on the coordinated views and the SunBurst at this
stage. With hindsight, this was not a good choice. The time
needed to find papers and the frustration in missing some of
them, impacted negatively on the overall judgment of some
testers, more than we expected.

The second element which basically all testers agreed on is
the fact that some statistics, for instance some counters about
the number of paragraphs, sections and inline elements, would
have make DocuDipity much more effective and usable. We
liked this suggestion and decided to implement it. The last bar
in the plot is about colours: some testers considered suboptimal
the choice of colors, in particular, in the SunBurst view: the
difference between the segments was not very evident and they
had difficulties in selecting and extracting some information.
A more balanced palette will be included in the next release
of the tool.

The answers given to the last question (about new rules for
DocuDipity) are also worth mentioning. Apart from one user,
all others suggested to get information that could be easily
spotted by DocuDipity. The suggestions can divided in three
groups. Most users suggested to identify document compo-
nents, such as figures, tables, charts, etc.. Other proposed to
process the textual content of the articles, for instance by
characterising elements according to their language and the
presence of grammatical/syntactical mistakes or imperfections.
Finally, some testers suggested to go deeper and highlight
topics and claims within the articles. Apart from the details of
each suggestion, we consider very positive their variety, con-
firming again the potentialities that users see in DocuDipity.

B. Editing rules in DocuDipity

In order to complete our evaluation we also asked five
participants, over 10 who used DocuDipity, to create new
visualization rules. Half of the testers were actually excluded
since they declared to have a very limited knowledge of
Javascript and would have add great difficulties in completing
the tasks. Indeed, the main direction of our research is to make
it simple to edit rules for such non expert users as well.

The test consisted of two assignments preceded by a warm-
up and some training on the Javascript and CSS syntax of
DocuDipity:

T3.1 Studying lists: testers were asked to add a rule for
identifying lists whose number of items was higher than
a given threshold. They were expected to find lists, count
the items in each list and filter. The rule was then quite
similar to one that they have already seen in the first
part of the test.

T3.1 Searching titled sections: testers were asked to add a
rule for identifying sections whose title contained the
string ‘XML’ or ‘XSLT’. The expected rule was slightly
different from the previous ones and based on regular
expressions.

After they completed the assignments, we asked testers to
answer some open questions about strengths and weaknesses
of the editing process. The overall feedback was positive but
all testers confirmed that the editing process is still quite
complex. There was no particular difference between the two
assignments. As expected, the second one was a bit easier after
having learnt how the DocuDipity rules work.

All the testers appreciated the possibility of editing rules
directly in the interface and to verify results on the fly; the
fact that the two DocuDipity views are synchronized was
also considered very positive: the users needed to validate the
results found by their queries and they were helped a lot by
the side-by-side view.

On the other hand, they all agreed that editing rules is not
simple. The testers complained that basic Javascript skills are
not enough but some knowledge of JQuery, and in particular
of selectors, is needed. Most testers suggested us to add a least
some documentation about JQuery selectors and API, so as to
mitigate this issue. Two testers also stressed on the difficulties
in debugging their code, as they basically had to use directly
the Javascript console. They also spotted some constraints in
the CSS classes that were not well documented (we fixed it
now). A more integrated editor and debugger would definitely
be helpful.

One tester also complained about the font size of the
interface, though all others gave positive feedback about the
overall organization of the editing and visualization areas.

In conclusion, DocuDipity rules were well accepted but
still a bit difficult to write and some simplification is needed.
We are envisioning an intermediate layer that takes as input
visualization rules written in a simplified language and convert
them in JavaScript in a transparent way. For instance, a
very simple XPath expression would be enough to handle
the previous case. Anyway, DocuDipity is totally independent
from a particular framework, and any other tools can be used
(e.g., EXT-JS) even instead of those included in the current
implementation.

Connected to this aspect, there is also the need for a library
of visualization rules within DocuDipity. The goal is to create
a shared reading environment in which users can experiment
new rules, write them rules incrementally and reuse them. This
opens very interesting perspectives: the initial experiments of
one user could be followed by other ones, and even partial
intuitions could give input and urge new ideas. Existing rules
might be also used to take inspiration by inexperienced users.

VI. CONCLUSIONS

This paper presented a system that exploits coordinated
views to analyse scientific articles. In particular, DocuDip-
ity integrates a plain text sequential reader and a SunBurst
visualization. These views have been successfully applied to
explore scholarly writing habits and to study, for instance,
the distribution of citations and the internal organization of
the articles’ content. DocuDipity proved to be very effective
in our tests. On the other hand, the editing process was still
considered quite difficult and we are studying how to make it
simpler and faster.

Another direction we are investigating is the integration
of further views in the overall interface, based on infoview
techniques. In fact, these techniques have been successfully
deployed in data-centric applications but not yet fully investi-
gated on documents.

Our plain is also to apply the DocuDipity analysis to other
documents and other domains. In particular, we are keen to
investigate the usage of well-know XML languages, like TEI
or DocBook, in structuring real document. To this end, we
would also like to make DocuDipity easy to use to other
scholars with no expertise nor skills in Computer Science,
e.g., scholars in Humanities, to discover things far beyond our
knowledge.

REFERENCES

[1] C. Tenopir, D. W. King, S. Edwards, and L. Wu, “Electronic journals
and changes in scholarly article seeking and reading patterns,” in Aslib
proceedings, vol. 61, no. 1. Emerald Group Publishing Limited, 2009,
pp. 5–32.

[2] C. Tenopir, R. Mays, and L. Wu, “Journal article growth and reading
patterns,” New Review of Information Networking, vol. 16, no. 1, pp.
4–22, 2011.

[3] K. Hornbæk and E. Frøkjær, “Reading patterns and usability in visualiza-
tions of electronic documents,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 10, no. 2, pp. 119–149, 2003.

[4] K. P. Kingrey, “Concepts of information seeking and their presence in
the practical library literature,” Library Philosophy and Practice, vol. 4,
no. 2, pp. 1–14, 2002.

[5] J. Stasko and E. Zhang, “Focus+ context display and navigation tech-
niques for enhancing radial, space-filling hierarchy visualizations,” in
Information Visualization, 2000. InfoVis 2000. IEEE Symposium on.
IEEE, 2000, pp. 57–65.

[6] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald, “An evaluation
of space-filling information visualizations for depicting hierarchical
structures,” International journal of human-computer studies, vol. 53,
no. 5, pp. 663–694, 2000.

[7] F. Mansmann, T. Göbel, and W. Cheswick, “Visual analysis of com-
plex firewall configurations,” in Proceedings of the ninth international
symposium on visualization for cyber security. ACM, 2012, pp. 1–8.

[8] D. F. Jerding and J. T. Stasko, “The information mural: A technique for
displaying and navigating large information spaces,” IEEE Transactions
on Visualization and Computer Graphics, vol. 4, no. 3, pp. 257–271,
1998.

[9] J. Stasko, C. Görg, and Z. Liu, “Jigsaw: supporting investigative analysis
through interactive visualization,” Information visualization, vol. 7,
no. 2, pp. 118–132, 2008.

[10] J. C. Roberts, “State of the art: Coordinated & multiple views in
exploratory visualization,” in Coordinated and Multiple Views in Ex-
ploratory Visualization, 2007. CMV’07. Fifth International Conference
on. IEEE, 2007, pp. 61–71.

[11] D. M. Eler, F. V. Paulovich, M. C. F. de Oliveira, and R. Minghim,
“Coordinated and multiple views for visualizing text collections,” in
Information Visualisation, 2008. IV’08. 12th International Conference.
IEEE, 2008, pp. 246–251.

[12] M. Jern, S. Palmberg, M. Ranlof, and A. Nilsson, “Coordinated views in
dynamic interactive documents,” in Coordinated and Multiple Views in
Exploratory Visualization, 2003. Proceedings. International Conference
on. IEEE, 2003, pp. 95–101.

[13] R. Gove, C. Dunne, B. Shneiderman, J. Klavans, and B. Dorr, “Evalu-
ating visual and statistical exploration of scientific literature networks,”
in Visual Languages and Human-Centric Computing (VL/HCC), 2011
IEEE Symposium on. IEEE, 2011, pp. 217–224.

[14] M. J. McGuffin and J.-M. Robert, “Quantifying the space-efficiency of
2d graphical representations of trees,” Information Visualization, vol. 9,
no. 2, pp. 115–140, 2010.

[15] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Transactions on graphics (TOG), vol. 11, no. 1, pp.
92–99, 1992.

[16] B. S. Johnson, “Treemaps: visualizing hierarchical and categorical data,”
1993.

[17] M. C. Chuah, “Dynamic aggregation with circular visual designs,”
in Information Visualization, 1998. Proceedings. IEEE Symposium on.
IEEE, 1998, pp. 35–43.

[18] B. B. Bederson, “Photomesa: a zoomable image browser using quantum
treemaps and bubblemaps,” in Proceedings of the 14th annual ACM
symposium on User interface software and technology. ACM, 2001,
pp. 71–80.

[19] H. Lü and J. Fogarty, “Cascaded treemaps: examining the visibility and
stability of structure in treemaps,” in Proceedings of graphics interface
2008. Canadian Information Processing Society, 2008, pp. 259–266.

[20] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,” in
Proceedings of the IEEE Symposium on Information Visualization 2001,
vol. 73078, 2001.

[21] H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space of implicit
hierarchy visualization: A survey,” IEEE transactions on visualization
and computer graphics, vol. 17, no. 4, pp. 393–411, 2011.

[22] H.-J. Schulz, “Treevis. net: A tree visualization reference,” IEEE Com-
puter Graphics and Applications, vol. 31, no. 6, pp. 11–15, 2011.

[23] G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees: animated
3d visualizations of hierarchical information,” in Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM,
1991, pp. 189–194.

[24] J. Lamping, R. Rao, and P. Pirolli, “A focus+ context technique based on
hyperbolic geometry for visualizing large hierarchies,” in Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM
Press/Addison-Wesley Publishing Co., 1995, pp. 401–408.

[25] D. Oelke, D. Spretke, A. Stoffel, and D. A. Keim, “Visual readability
analysis: How to make your writings easier to read,” IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 5, pp. 662–674,
2012.

[26] C. Collins, S. Carpendale, and G. Penn, “Docuburst: Visualizing doc-
ument content using language structure,” in Computer graphics forum,
vol. 28, no. 3. Wiley Online Library, 2009, pp. 1039–1046.

[27] A. Di Iorio, S. Peroni, F. Poggi, and F. Vitali, “Dealing with structural
patterns of xml documents,” Journal of the Association for Information
Science and Technology, vol. 65, no. 9, pp. 1884–1900, 2014.

[28] ——, “A first approach to the automatic recognition of structural patterns
in xml documents,” in Proceedings of the 2012 ACM symposium on
Document Engineering. ACM, 2012, pp. 85–94.

[29] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Visual Languages, 1996. Proceedings.,
IEEE Symposium on. IEEE, 1996, pp. 336–343.

[30] A. Di Iorio, A. G. Nuzzolese, and S. Peroni, “Identifying functions of
citations with citalo,” in Extended Semantic Web Conference. Springer,
2013, pp. 231–235.

[31] A. Di Iorio, R. Giannella, F. Poggi, S. Peroni, and F. Vitali,
“Exploring scholarly papers through citations,” in Proceedings of the
2015 ACM Symposium on Document Engineering, ser. DocEng ’15.
New York, NY, USA: ACM, 2015, pp. 107–116. [Online]. Available:
http://doi.acm.org/10.1145/2682571.2797065

[32] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[33] J. Sauro, A practical guide to the system usability scale: Background,
benchmarks & best practices. Measuring Usability LLC, 2011.

[34] J. Lewis and J. Sauro, “The factor structure of the system usability
scale,” Human centered design, pp. 94–103, 2009.

[35] J. Corbin, A. Strauss et al., “Basics of qualitative research: Techniques
and procedures for developing grounded theory,” 2008.

