
A Hybrid System for Detection of Implied
Scenarios in Distributed Software Systems

Anja Slama
Department of Electrical and

Computer Engineering
University of Calgary

Calgary, Canada
anja.slama@ucalgary.ca

Fatemeh Hendijani Fard
Department of Computer Science

University of Calgary
Calgary, Canada

fhendija@ucalgary.ca

Behrouz Far
Department of Electrical and

Computer Engineering
University of Calgary

Calgary, Canada
far@ucalgary.ca

Abstract—Distributed software systems (DSS) are usually
open-ended systems used in different domains such as robotics,
energy, health, etc. Multi-agent system (MAS) are a sub-class
of DSS. In DSS, maintaining consistency between the system
iterations is a complex and expensive task that requires coping
with requirements changes and systems upgrading. The inter-
actions, complexity and decentralized communication between
components of the DSS may emerge an unwanted behavior.
An unwanted behavior, known as Emergent Behavior (EB) or
Implied Scenario (IS), could lead to irreversible damages. Thus,
detecting IS at an early stage of the system development is
needed to decrease the cost of maintaining the system. This work
focuses on verification of DSS that its requirements modeled using
Message Sequence Chart (MSC). The system verification focuses
on the detection of IS using two already proposed different
approaches. This article presents the combination of the two
approaches by improving the usability of the tool presented in
the first approach and the catalogue presented in the second
approach. This combination allows the detection of new implied
scenarios not detected using the cited approaches separately.

Index Terms—Distributed Systems, Multi-agent systems, Im-
plied Scenarios, Message Sequence Chart

I. INTRODUCTION

Distributed Software Systems (DSS) and Multi-Agent Sys-
tem (MAS) are used in a wide spectrum of domains. MAS
are a sub-class of DSS. The size of DSS as well as the lack
of central control together contribute to complexity of DSS’
behavior.
Scenario-based specification is used to model the interaction
between the DSS components that provide the overall system
functionality. As each scenario presents a partial specification
of the system, the identification of unexpected interaction
patterns may not be obvious. These unexpected patterns ex-
hibit system behaviors that do not conform to the system
requirement and design. These patterns are known as Implied
Scenarios (IS) or Emergent Behavior (EB) [1].
The detection of presence of implied scenarios will usually
lead to detect potential system failures at run-time that may
prevent irreversible damages to the system and reduce the
overall system development and maintenance cost. Thus, there
is a need for an analysis tool to inspect the interactions of the
components and their impact on the overall behavior of the

DOI reference number: 10.18293/SEKE2018-195.

system.
In this paper, we present a technique that combines two already
existing methodologies, which are based on the analysis of
Message Sequence Charts (MSC). This work aims to detect
potential ISs and alert the developer to address the issue
that does not conform to the concurrent nature of distributed
systems. The advantage of the combination of the two method-
ologies is to get benefit from the automatic analysis of the
MSCs using the LTSA tool [2], in order to detect the classical
types of IS and also those defined in the catalogue of implied
scenarios developed in our research group [3]. Unfortunately,
the two techniques in their current form are incompatible. In
this work, we compare both methodologies and we propose a
technique to exploit the results of the extension of the LTSA
tool considering the catalogue of implied scenarios.

II. BACKGROUND AND RELATED WORK

A. Preliminaries

In this section, we explain the different types of implied
scenarios and we review the concepts used in this work.

a) Implied Scenarios (IS): An implied scenario is a
behavior of the distributed system that does not conform to the
system requirements. We can investigate the system behavior
in two levels: component level, and system level [3]. For the
component level, the implied scenarios can be categorized into
four main classes:

• CLEB-I (Shared states)
The existence of a shared state of one component
in different scenarios. The states occurring after these
shared states make the behavior of the component non-
deterministic.

• CLEB-II (Respond to different components)
When a component receives the same message from
two other different components, bringing it to the same
state, an implied scenario could occur if the component
receiving the messages loses track of the senders or
receivers’ information. In this case, the component could
be confused in which MSC to proceed.

• CLEB-III (Local branching)
This could occur when the component is active, i.e. can



initiate sending a message, in one of the MSCs included
in the branch of its high level MSc (hMSC) and where
no condition is specified to trigger its functionality in the
next MSC.

• CLEB-IV (Race conditions)
The race condition occurs when the behavior of the
component depends on the order of receiving messages
from other components.
b) Message Sequence Chart (MSC): Message Sequence

Charts (MSCs) are usually used to formalize and model
the requirements of distributed software systems. MSCs are
standardized by telecommunication standardization of the In-
ternational Telecommunication Union (ITU). It models the
interaction between the system components [4].

c) Labelled Transition System Analyser (LTSA): LTSA
is a tool used to automatically check and analyze models in
order to confirm the expected behavior from the designer and
implementer’s viewpoint [5].
LTSA can translate the MSC chart to Finite State Processes
(FSP) definition, a form of state machine description, used
to draw the correspondent states machine. This tool offers
different features to support verification of properties including
safety and progress check [6].

B. Related Work

Among the model-based analysis approach, many re-
searches have been performed so far. Process divergence and
non-local branching choice were identified as under specifi-
cation in MSC that could cause IS [11]. This research has
been extended by generating state machines from the scenario
specification in order to detect implied scenarios [12]. The for-
mal methods tool, Spin, has been introduced to verify models
for distributed software design [13]. Another approach aimed
to detect implied scenarios considering the order between the
events specified in the scenario specification [14]. In another
work causality among events and using ontology to detect IS
has been studied [15], [16].
Fard proposed a catalogue to categorize IS according to their
reason of occurrence and devise the solution repositories
accordingly. This methodology was based on state machines
and social network analysis [3].

III. METHODOLOGY

In this work, we use the LTSA [2] and the catalog of
implied scenarios [3] together. In the following, we compare
the effectiveness of each as well as our approach that combines
both, to find out implied scenarios.

A. Modeling System behavior using MSCs

The first step is modeling system interaction in the form
of MSCs. The MSCs are translated to Finite State Processes
(FSP) in order to model the required behavior and then
compiled in the form of Labelled Transition System (LTS). For
each component, the state machine of the parallel execution of
the component FSPs is generated. The approach behind this
phase is fully described in [2].

B. Detection of Implied Scenarios
Based on the generated FSMs, a verification of the existence

of implied scenario is realized based on the LTSA tool. More-
over, to detect further type of implied scenarios, we analyze
the traces generated by the LTSA taking into consideration the
catalogue of IS. The method used to detect IS in this latter
is based on extracting identical states for each agent from the
send matrices obtained from the MSCs [10].
To detect the different type of ISs, explained in section II.A,
we start by analyzing the set of shared states of the process
detected by the LTSA tool. Performing a progress and a
safety check on a selected component of the system, the
tool generates the related trace based on the MSC modeling
messages. The analysis consists of fetching the pattern defined
by the catalogue to detect the IS.

IV. EXPERIMENT
A. Objectives and research questions

In this work, we seek to answer the following questions:
• RQ: How effective are these approaches to detect Implied

Scenarios? We apply the approach on three case studies
and we compare the number and the type of ISs detected
based on the same case studies. The type of ISs corre-
sponds to the classes of IS presented previously in the
section II.A.

B. Case studies specification
To answer the research question, we use and evaluate the

three case studies presented below;
a) Fleet Management System: The requirements of the

Fleet Management System are locating drivers, considering
different itineraries and approximately calculating the depar-
ture or arrival time for a minimum commute time [8]. The
requirements are demonstrated in Fig. 1 to 4

b) Greenhouse System: This case represents the interac-
tion between the agents of the Greenhouse Multi Agent System
to control the greenhouse’s environment by managing the
available resources. The modeling of this system is composed
by two MCSs as presented in [8].

c) Online Auction System: This case study represents
interaction between the six agents (Controller, Auctioneer,
Registrar, Seller, Buyer and Credit Associate) in order to
assure the sell and the buy of books online according the rules
defined by the auction hosting authority [9].
Table 1 is a recapitulative table of the case studies considered
in this work.

TABLE I
SUMMARY TABLE OF THE CONSIDERED CASE STUDIES

Case Study # MSCs # Transitions # Processes
Feet Management 4 37 8

Greenhouse 2 20 8
Online Auction 6 100 6

C. Evaluation measurement
We use two evaluation measurements which are the type of

implied scenarios according to the catalogue and the number
of implied scenarios detected.



Fig. 1. MSC M1-Schedule management

Fig. 2. MSC M2-Prediction and time estimation

Fig. 3. MSC M3-Reschedule request by Agent

Fig. 4. MSC M4-Reschedule request by Processor

D. Procedure

The experiments conducted in this study consist of the
detection of implied scenarios from the system modeling.
Fig. 5 shows the different components of the system used
during this process.

The verification process of the system consists of modeling
graphically the system in the form of MSC using LTSA-MSC
[17]. MSCs are converted to an FSP specification. LTSA tool
checks the system for implied scenarios and safety violation
based on this latter. The next step consists in analyzing the
traces produced by the LTSA tool to detect further implied
scenarios.

Fig. 5. Different components of the LTSA tool used during the process of
detection of IS

E. Results

To answer the research question, we compare the number
and the type of IS detected. Table II shows the results.

TABLE II
THE DETECTED ISS IN FLEET MANAGEMENT SYSTEM

Type/Approach Uchitel Fard Combined approach
CLEBI No IS found No Yes
CLEBII No IS found Yes Yes
CLEBIII No IS found No No
CLEBIV No IS found No No
Deadlock No deadlocks/errors N/A Yes

We apply the same procedures on the other case studies
presented in Sect.IV.B to get the number of IS detected in
each use case as shows the Table III.

TABLE III
THE NUMBER OF IMPLIED SCENARIOS DETECTED IN EACH CASE STUDY

Type/Approach Uchitel Fard Combined approach
Feet Management System 1 1 3

Greenhouse System 1 1 3
Online Auction System 1 N/A 4

Fig. 6 shows the relation between the number of IS detected
and the number of communication messages between the
different processes. According to [18], there are a strong
correlation between the number of detected IS and the number
of messages. Whereas, there are a negative correlation between
the number of implied scenarios detected and the number of
processes. The probability of emergence of ISs is related to
the grow of systems in complexity.

F. Discussion

Table III summarizes the number of detected ISs in the
considered case studies. The efficiency of our work to detect



Fig. 6. Correlation between the results and the input data

ISs is based on a hybrid ensemble of the two previous
approaches. We show that this method has the ability to detect
more IS than Uchitel’s and Fard’s approaches in the three
case studies. The reasons are that we take advantage of the
automatic detection of shared states generated by the LTSA
tool in order to facilitate the detection of EBs defined by
Fard’s work and that the approach of this latter do not detect
deadlocks. Additional case studies may be needed to build a
stronger database of the anti-patterns. By combining the two
methodologies through the case studies, we have shown that
we can achieve more efficiency in term of the number and
type of Implied Scenarios detected.

G. Threats to the validity of the study

The approach proposed in this work is based on the LTSA
tool. The traces generated by the LTSA tool directly impact the
number and the type of IS detected. Testing the LTSA tool, we
found out that the number of states generated is reduced and
limited to a maximum number set by the tool itself to avoid
the explosion of states. In future work, we have to further
investigate the effect of reducing the states on possibly missing
some of the implied scenarios. Moreover, the differentiation
between asynchronous and synchronous communications is
not considered.

V. CONCLUSION AND FUTURE WORK

The detection of implied scenarios in requirement and
design phase is important for several reasons such as reduction
of the project cost, time as well as the prevention of the
occurring of unwanted behavior that could have irreversible
damages to the systems environment and/or users. Assuring
conformity of the system behavior to its requirements is not
a trivial task in open ended systems. Therefore, a tool to
maximize the detection of IS before the implementation is
an immediate need. In this work, we targeted the detection of
a greater number of ISs by combining two existing method-
ologies. The first challenge, was the fact that the explosion
of states generated by the LTSA while defining different
relation between the MSCs composing the system. The second
challenge was to prove that the detected ISs form the system
modeling really exist when monitoring the software if the
system is developed and we are keen to work further on this
challenge in future. Our overall goal is to automatically detect
implied scenario at the requirement level using various forms

of communication diagrams. Our technique was a combination
of the two existing approaches. We are currently working on
a platform for verification, testing and monitoring multi-agent
systems using the JADE platform. We plan to extend this work
by integrating the generation of the MSCs of the system from
the execution trace or from the code within this tool. Moreover,
we target the implementation of a plugin for Eclipse IDE that
graphically shows the implied scenarios on top of the MSC
diagrams.

VI. ACKNOWLEDGMENT

This work is partially supported by a grant from NSERC,
Canada.

REFERENCES

[1] J. Chakraborty, D. D’Souza, and K. N. Kumar, ”Analysing message
sequence graph specifications,” in Lecture Notes in Computer Science,
2010, vol. 6415 LNCS, no. PART 1, pp. 549-563.

[2] S. Uchitel, ”Incremental Elaboration of Scenario-Based Specifications
and Behavior Models Using Implied Scenarios,” 2003.

[3] F. H. Fard, ”Detecting and Fixing Emergent Behaviors in Distributed
Software Systems Using a Message Content Independent Method,”
UNIVERSITY OF CALGARY, 2016.

[4] S. A. Chernenok and V. A. Nepomniaschy, ”Analysis and verification of
message sequence charts of distributed systems with the help of coloured
Petri nets,” Autom. Control Comput. Sci., vol. 49, no. 7, pp. 484-492,
2015.

[5] G. N. Rodrigues, D. Rosenblum, and J. Wolf, ”Reliability Analysis of
Concurrent Systems Using LTSA,” in ACM/IEEE International Confer-
ence on Software Engineering (ICSE) Companion, 2007, pp. 63-64.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer, ”LTSA-WS: A Tool for
Model-Based Verification of Web Service Compositions and Choreog-
raphy,” 28th Int. Conf. Softw. Eng. (ICSE 06), pp. 771-774, 2006.

[7] F. H. Fard and B. H. Far, ”Detection of implied scenarios in multiagent
systems with clustering agents’ communications,” Proc. 2014 IEEE 15th
Int. Conf. Inf. Reuse Integr. IEEE IRI 2014, pp. 237-244, 2014.

[8] F. H. Fard and B. H. Far, ”Detection and verification of a new
type of emergent behavior in multiagent systems,” in INES 2013 -
IEEE 17th International Conference on Intelligent Engineering Systems,
Proceedings, 2013.

[9] F. H. Fard and B. H. Far, ”A method for detecting agents that will
not cause emergent behavior in agent based systems - A case study
in agent based auction systems,” in Proceedings of the 2012 IEEE
13th International Conference on Information Reuse and Integration,
IRI 2012, 2012.

[10] F. H. Fard and B. H. Far, ”Detecting a certain kind of emergent behavior
in multi agent systems applied on MaSE methodology,” Can. Conf.
Electr. Comput. Eng., pp. 03, 2013.

[11] H. Ben-Abdallah and S. Leue, ”Syntactic detection of process diver-
gence and non-local choice in message sequence charts,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 1217, pp. 259-274, 1997.

[12] H. Muccini, ”Detecting Implied Scenarios Analyzing Non-local Branch-
ing Choices,” in International Conference on Fundamental Approaches
to Software Engineering, 2003, pp. 372-386.

[13] G. J. Holzmann, ”The Model Checker SPIN,” Ieee Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279-295, 1997.

[14] I. G. Song, S. U. Jeon, A. R. Han, and D. H. Bae, ”An approach to
identifying causes of implied scenarios using unenforceable orders,” Inf.
Softw. Technol., vol. 53, no. 6, pp. 666-681, 2011.

[15] Mousavi Abdelmajid, ”Inference of emergent behaviours of scenario-
based specifications,” University of Calgary, 2009.

[16] M. Moshirpour, ”Model-based Analysis of Software Requirements for
Distributed Software Systems,” 2016.

[17] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, LTSA-MSC: Tool
support for behaviour model elaboration using implied scenarios, vol.
2619. 2003.

[18] R. Richard Taylor, EDD, ”Interpretation of the Correlation Coefficient:
A Basic Review.” JDMS, 1990.


