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Abstract—Access control is a ubiquitous feature in almost all 

computer systems, and as data becomes more and more of an 

important asset for organizations, so do the associated access 

control policies. However, with the increase in the amount of data 

being produced, e.g. in IoT and social networks, the interest in 

simpler access control is increasing as well since more subjects 

(public, researchers, etc.) are now requesting access to it. Defining 

the exact conditions to allow each subject to access the data can be 

difficult, especially when vaguely defined conditions such as 

"expertise of a researcher" come into play. Fuzzy Inference 

Systems (FIS) allow to process these vague conditions and enables 

access control mechanisms to be more easily applied. The 

contribution of this paper lies in showing how a FIS can be used to 

output binary access control decisions (grant/deny) and what are 

the differences in the inference process that stems from restricting 

the output to these two output values. 

Keywords-fuzzy systems, vague knowledge, information security, 

access control. 

I. INTRODUCTION 

Access control has always been an important feature in any 
system, be it physical or digital, as it restricts access to a  
resource in a controlled and selective manner [1]. The most 
successful access control models are usually those that mimic 
real-world ways of managing permissions within the context of 
their application, of which the Role-based Access Control 
(RBAC) [2] model is a key reference. RBAC is a classical model 
that maps subjects trying to access some resource to a role, a 
meaningful category within the context of the system being 
protected, and crisp access control rules define the resources a 
subject playing a given role may access to successfully complete 
its tasks. Other classical access control models operate in a 
similar manner, using crisp rules that clearly define which 
resources each subject may access. 

However, with the advent of big data and social networks, 
the quantity and complexity of data available that needs to be 
stored and processed have increased considerably. Classical 
access control models are ill-suited to handle these scenarios, as 
they require tight mappings between subjects, objects, and 
permissions. This means new subjects must be manually 
assigned to their permissions before they can access the data, 
which introduces delays and adds security management loads.   

Additionally, the real world is not always as unambiguous as 

the classical access control models require it to be in their 
policies. For example, some documentation from European 
projects may not be publicly available but could be disclosed to 
experts researching in some area related to a project. There is no 
hard definition of what makes someone an expert, so normally it 
would have to be checked manually on a case-by-case basis. In 
such situations, the fuzzy set theory is an appropriate solution 
since it can handle vague concepts, such as expertise of the 
subject, without requiring crisp values within its rules. Thus, 
allowing policy rules to be richer in meaning and flexibility. 

The theory of fuzzy logic [3] aims to capture how human 
perception and cognition interpret the world, which is not 
unambiguous all the time. To this end, it uses relative graded 
memberships between a subject and a vague concept. Thus, 
fuzzy logic permits the inclusion of vague human assessments in 
computing problems, which proved to be an effective way to 
deal with multi-criteria problems [4]. Solutions known as fuzzy 
inference systems (FIS) were then designed to map a set of 
inputs to outputs, using fuzzy logic and fuzzy sets to define 
vague conditions. These characteristics allowed fuzzy logic and 
fuzzy set theory to find a lot of uses in various areas, such as 
medicine [5]–[7], computer security [8]–[14], networking [15], 
[16], aeronautics [17], stock trading [18], and many others [4], 
[19]–[22]. 

Consider a community managed public data, like a wiki, 
where only subjects that are experts (to some degree) on the 
contents of a page would be able to modify it. Since wiki pages 
are generally given categories related to their contents and other 
related tags, the access control system could access services such 
as Scopus to retrieve the number of publications, their keywords, 
citations, etc. This information could then be fed into a fuzzy 
inference system to determine the level of expertise of the user 
and help the access control system to make its access control 
decisions. Thus, leading to fewer modifications by users with 
malicious intents and more modifications with quality content.  

Thus, the contribution of this paper lies in proposing an 
access control model that uses a FIS to make binary access 
control decisions, herein known as BDFIS; the presentation of 
application scenarios where such a system could be useful; and 
what are its benefits/issues when compared to other access 
control mechanisms. 

The rest of this paper is organized as follows: section II will 
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provide some of the state of the art in regards to the application 
of fuzzy set theory in access control; section III will provide the 
analysis made to each step made during the output generation 
process of the BDFIS; section IV will present a proof of concept 
of the proposed model; and section V will provide a short 
discussion while addressing the issues found. 

II. RELATED WORK 

The fuzzy set theory is a topic that has been researched in 
recent years to tackle scenarios where the information that needs 
to be processed is vague, which can include management 
science, politics, social psychology, artificial intelligence, and 
access control, among others [4]. This capability to handle vague 
information is what enables it to be useful in scenarios where 
binary decisions must be made and the decision rules are 
difficult to define in a crisp manner. 

Surprisingly, it was found that there is very little research 
done in terms of the application of fuzzy set theory in access 
control systems. The issue is suspected to come from the fact 
that by using vague conditions in the form of fuzzy sets, a fuzzy-
based access control system does not explicitly state which input 
values would grant access to some resource which would not. 
This paper is focused on exploring these limitations and where 
fuzzy systems can be improved for this area of intervention.  

In [23], the authors introduce Fuzzy Role-based Access 
Control (FRBAC), which uses fuzzy relations between users-
roles and roles-permissions: 

• USERS x ROLES → [0, 1] 

• ROLES x PERMISSIONS → [0, 1] 

This approach allows for users to have partial permission 
assignments, which are then used to calculate the access degree 
they have to each resource. Then, if the access degree is used 
directly to control access to a resource, the resource itself must 
have fractional access, defined using the following access 
function where USERS is the set of users, OPS the set of 
operations and OBS the set of objects: 

• access: USERS x OPS x OBS → [0, 1] 

Martínez-García et al. define a function that takes a threshold 
variable δ (i.e. a value between 0 and 1) and returns grant if the 
access degree is greater than δ or deny if not. However, this 
approach still restricts the fuzzy sets to roles. Therefore, it limits 
the type of access control logic that can be used. BDFIS, in 
contrast, does not require subjects to be mapped to the protected 
resources through any specific model, such as roles, allowing to 
abstract any mapping between them. 

Another work was found where the trust level of devices is 
measured, so a fuzzy approach to trust-based access control 
could be achieved (FTBAC) [11]. This is done by capturing 
information about the devices to determine the vague concepts 
Experience (EX), Knowledge (KN) and Recommendation (RC), 
and several fuzzy sets (linguistic terms) were defined for each 
one. The following values for each concept are calculated for a 
context c between two devices A and B, used as inputs for the 
membership functions of the linguistic terms. 

EX depends on the history of interactions 𝑣𝑘 between A and 

B, where 𝑘 ∈ [0, 𝑛] , incrementing or decrementing when a 
positive or negative interaction occurs, as shown in (1). 

(EX)c =
∑ vk

n
k=1

∑ |vk|n
k=1

                                 () 

KN is calculated with the help of direct knowledge d, indirect 
knowledge r, and their respective weights (Wd , Wr ), where 
d, r ∈ [−1,1], Wd, Wr ∈ [0,1], and Wd + Wr = 1, as shown in 
(2). 

(KN)c = Wd ∗ d + Wr ∗ r                         () 

The RC is calculated by device A based on the summation of 
the RC values from n other devices about device B. Wi and (rc)i 
are weights assigned by device A to the recommendation of the 

ith device and its RC value respectively, where rc ∈ [−1,1] and 
Wi ∈ [0,1], as shown in (3). 

    (RC)c =
∑ Wi

n
1 ∗(rc)i

∑ (rc)i
n
1

                             () 

Different permissions can be mapped to different levels of 
trust, so depending on the level of trust the granted permissions 
change. This the access decisions solely based on the level of 
trust. If there are other access conditions, they need to be 
considered separately. Since BDFIS can abstract any mapping 
rule between subjects and resources, the level of trust can be 
used in the same manner. However, unlike FTBAC, other access 
requirements can be added without issue to the inference system. 

Another work was carried out that uses fuzzy set theory to 
calculate a measure of risk and applies it to enhance the access 
security of eHealth cloud applications [10]. To achieve this, 
three different inputs are used: data sensitivity; action severity; 
and risk history. Next, a set of rules is applied to calculate the 
level of risk associated. A crisp output value is then determined 
by applying a defuzzification technique, which indicates the 
overall level of risk as a percentage. However, the process to 
determine whether the access should be granted given a risk 
level is not detailed. Moreover, this approach is specific to the 
measurement of the level of risk with a given access attempt. 
This limits the applicability of this approach when compared to 
BDFIS, which can use most concepts in its policies. 

 

Figure 1.   Conceptual BDFIS block diagram. 



III. BINARY DECISION FIS ANALYSIS  

In this section, a FIS is analyzed regarding its applicability 
to binary decision making (access control grant/deny decisions) 
in each of its processing steps.  

There are many different types of FIS [24]–[28]. However, 
the Mamdani-type FIS [28] was chosen for analysis since it is a 
type of system that is commonly available on most FIS 
implementation tools, has widespread use and it was found to be 
easily adaptable to support binary decisions. The Sugano-type 
FIS [27] is also commonly available in such tools, but it falls 
short as it has less expressive power and interpretability than the 
Mamdani-type FIS [29]. Fig. (1) shows the conceptual BDFIS 
that will emerge from the analysis made in this section and will 
serve as an illustrative guide to the proposed modifications. 

The standard Mamdani-type FIS goes through the following 
set of steps during processing:  

1. The determination of the set of fuzzy rules by an expert 
in the application context (i.e. the rules block); 

2. The fuzzification of the input variable values into the 
input linguistic terms (LTs) using the associated 
membership functions; 

3. The application of the fuzzy rules to establish the rule 
strengths to the output LTs, known as the fuzzy 
decision components (FDC) in the BDFIS; 

4. The combination of the rule strength and the output 
LTs membership functions to determine the 
consequence functions for each output variable; 

5. The combination of the consequence functions to get 
an output distribution function for each output variable; 

6. The defuzzification step, which outputs a single crisp 
value for each output variable (a decision in the context 
of the BDFIS) given an output distribution function 
(required only if a crisp output is needed).  

These steps will be detailed in the following subsections and 
how they were modified for the BDFIS. 

A. Fuzzy Rule Determination 

The fuzzy rule determination process involves deciding 
which linguistic terms are going to be used within the FIS, both 
for input and output variables, and how they influence each other 
using predefined rules.  

The input linguistic terms should stay effectively the same as 
they still qualify the attributes available in the application 
context. The input linguistic terms and their membership 
functions are still required to be written by an expert. 

The output variables and linguistic terms, however, are 
dependent on the decisions must be made. In the case of an 
access control system, the decisions are either to grant or deny a 
subject some permission to a resource. Thus, permissions can be 
declared as the output variables according to Def. (1). 

Definition 1. Access permissions in a BDFIS are output 
variables associated with exactly two FDC linguistic terms: one 
for a positive decision 𝐹𝐷𝐶+ (yes/grant); and one for a negative 
decision 𝐹𝐷𝐶− (no/deny). 

The rules can then take input linguistic terms from one or 
more input variables and establish a relation to one of the FDCs. 
To illustrate, consider two input variables A and B, with the 
linguistic terms LTA and LTB, and an output variable Z. A rule 
can take the form "if A is LTA and/or B is LTB then Z is FDC±". 

For example, "if Expertise is High and Activity is Moderate then 
Read is Granted." 

This shows how a FIS can be used to easily encode vague 
access conditions: given a set of vague concepts about a subject 
(e.g. Expertise, level of Activity, etc.), the permissions (Read, 
Write, etc.) to the resource are output variables that are defined 
by either being granted (𝐹𝐷𝐶+) or denied (𝐹𝐷𝐶−). Furthermore, 
the permission and decision pair are easily identifiable. 

B. Input Fuzzification And Rule Strength 

The input fuzzification process and rule strength 
determination are steps that qualify the input variables in terms 
of the defined linguistic terms. Given a set of linguistic terms Ti 
for an input variable i, the membership degree of a subject s to 
each linguistic term 𝑡 ∈ 𝑇𝑖  is obtained by applying that linguistic 
term membership function 𝜇𝑡, as shown in (4). 

    𝜇𝑡(𝑠): 𝑡 → [0,1], t ∈ Ti                               () 

To illustrate, if 𝜇𝑡(𝑥) = 𝑥/20, 0 ≤ 𝑥 ≤ 20 is used to define 
the “high” linguistic term for the “number of publications” input 
variable, then if a subject has 15 publications it has a 
membership degree of 15/20 = 0.75  to that linguistic term. 
The membership functions 𝜇  are defined by an expert in the 
application context the BDFIS is to be deployed on, since vague 
concepts like Expertise can change slightly depending on the 
context. After a membership degree is calculated for each input 
linguistic term, the rule strength for each output FDC can be 
determined. This is usually done by applying the fuzzy logic 
operators as dictated by the rules (AND, OR, and NOT). If more 
than one rule applies to the same FDC, the rule strength of each 
such rule is unified by typically applying the OR operator. These 
operators have several different implementations for fuzzy logic 
that can be used, but they always satisfy the De Morgan’s Laws. 

To reiterate, there are only two possible output linguistic 
terms: the FDC− and the FDC+. This makes it clear for which 
outcome a rule is being used for instead of having something 
more abstract, such as the user expertise level, and lets the 
system make access control decisions based on it. 

C. Consequence Determination 

The next step is to determine the consequence of the rules 
and to do so it is necessary to think about what the output is 
intended to be. 

The goal is to have a FIS that can make a binary access 
control decision for each permission (i.e. grant or deny). As 
such, each decision is defined by two linguistic terms, the FDC+ 
and FDC− output linguistic terms previously introduced. These 
represent the positive and negative decisions for a single output, 
respectively. This way, a subject attempting to access some 
piece of information or service is mapped automatically through 
rule strengths to each FDC. 

Since each FDC is also a fuzzy set, each can have any 



membership function that the security expert chooses. However, 
a simpler approach is proposed to reduce the complexity of the 
calculations and the potential performance bottleneck that 
running a FIS can introduce. Instead of a user-defined output 
membership function, each FDC will have a predefined 
singleton function (see Def. (2)) instead.  

Definition 2. A given function f(x) is a singleton function if 
its output is always 0 except for a single input value x0 , for 
which its output is 1 as shown in (5). 

   f(x) = {
1,  if x =  x0

0,  if x ≠ x0
                           () 

Since it is expected for the BDFIS to output a decision, it 
makes sense that they are each associated with a single value. 
This is partially the reason why the membership function for 
each FDC is proposed to be a singleton function. This is done by 
setting the single function x0 value to 0 for the FDC− and to the 
value 1 for the FDC+. These values were carefully chosen since 
they simplify the defuzzification step considerably, which will 
be shown in section III.D.  

Thus, the membership functions of the FDC−  (μ−(x)) and 
FDC+ (μ+(x)) are singletons that are defined as shown in (6) and 
(7), respectively. 

    μ−(x) = {
1,  if x = 0
0,  if x ≠ 0

                             () 

    μ+(x) = {
1,  if x = 1
0,  if x ≠ 1

                             () 

Finally, the process of determining the consequence consists 
of truncating the output membership function, i.e. both 𝜇−(𝑥) 
and 𝜇+(𝑥). Def. (3) shows how this process is accomplished.  

Definition 3. The process of truncating a given function f at 
the value y = y0 generates a new function g that has the same 
output as f except that any output value greater than y0 becomes 
y0, as shown in (8). 

    g(x) = min(f(x), y0)                           () 

Determining the consequence from these singleton functions 
also becomes easier for the following reasons: 

1. Singleton functions only have one input value (x = x0) 
for which the output is not 0, thus only one value may 
have to be truncated; 

2. The FDC singleton membership functions always 
output 1 for the value x = x0; 

3. The rule strength applicable to each FDC always lies 
within the range [0,1]  since it is the result of the 
application of fuzzy logic. 

Since the output membership function of each FDC is either 
0 or 1 as stated in reasons (1) and (2) and the rule strength is a 
value within the range [0,1]  as stated in reason (3), the 
consequence function C is determined by simply replacing the 
output value 1 with the rule strength RS for that 𝐹𝐷𝐶, as shown 

in (9) for 𝐹𝐷𝐶− and (10) for 𝐹𝐷𝐶+. 

    C−(x) = {
RS−,  if x =  0

0,  if x ≠ 0
                           () 

    C+(x) = {
RS+,  if x =  1

0,  if x ≠ 1
                         () 

These consequence functions can then be used in the 
defuzzification step to generate a single, crisp output value. This 
explains in part how using singleton functions simplifies the 
computation of the final decisions. However, further benefits 
from this approach will be explored in the following subsection. 

D. Consequence Combination And Defuzzification 

The next step in the process involves combining the 
consequence functions of both FDCs (C− and C+) into an output 
distribution function for each output decision. This allows to 
apply a defuzzification method, an inverse transformation to the 
fuzzification step, that outputs a crisp output value for each 
output decision. 

These steps are optional and depend on the level of 
information the system requires to reach a decision. If the system 
requires more than a crisp output value, it can use the rule 
strengths given to each FDC and make a more informed decision 
this way. For example, a use case could require an access control 
system to ask a human to manually grant or deny access if the 
rule strengths of both FDCs are close to one another.  

However, if the system requires a crisp value between 0 and 
1, then the consequence functions can be combined into an 
output distribution function (Def. (4)) and a defuzzification step 
may be used.  

Definition 4. Given the consequence functions C− and C+ of 
an output variable O , the output distribution function θ 
associated with O  is the result of applying an accumulative 
function S, as shown in (11). 

    θ(x) = S(C−, C+)                              () 

The approach used in this paper uses the maximum 
accumulative function. Consider that both FDC−  and FDC+ 
have RS−  and RS+  rule strengths respectively. The resulting 
output distribution function for each output decision Z  (𝜃𝑍) is 
shown in (12). 

θZ(𝑥) = {
𝑅𝑆−,  if x =  0
𝑅𝑆+,  if x =  1

0,  if x ≠  0 ∧  x ≠  1
                () 

Therefore, all output distribution functions are the 
combination of two singleton functions, one for the FDC− on the 
x value 0 and the other for the FDC+ on the x value 1.  

A defuzzification method can then be applied to each output 
distribution function generated this way for each output variable. 
To show why the selected x  values for each singleton were 
chosen, the commonly used center of gravity for singletons 
(COGS) defuzzification technique will be applied to 𝜃𝑍 . The 
general COGS formula for a given output distribution function 



θZ is given in (13). 

    COGS(θZ) =
∑ xx ∗θZ(x)

∑ θZ(x)x
                          () 

Note that if the output distribution function 𝜃𝑍  is not 
generated from singleton membership functions then the 
formula for the center of gravity is a division of two primitives. 
Fortunately, since the proposed output distribution functions are 
always the combination of two singletons, which are also always 
defined on the x values 0 and 1, the formula (14) follows: 

    COGS(θZ) =
0∗θZ(0)+1∗θZ(1)

θZ(0)+θZ(1)
=

θZ(1)

θZ(0)+θZ(1)
          () 

As it can be seen, the COGS formula was simplified to a 
simple fraction of the rule strength of the FDC+ to the sum of the 
rule strengths of the FDC− and FDC+, reducing its complexity. 

The application of the COGS defuzzification method to each 
output distribution function results in a crisp output value, which 
can used to arrive at a final decision. The simplest way to achieve 
this is to set a fixed threshold, such as 0.5, and if the crisp output 
is lower than the threshold then the decision is negative (deny, 
in the access control context), otherwise, it is positive (grant, in 
the access control context). The threshold value can be increased 
or decreased to fine-tune the system as required by an expert. 
Any other method to arrive at a decision is valid, such as the 
maximum method which takes the x value that maximizes the 
output distribution function and depends only on the use case. 

E. BDFIS Analysis 

A modified Mamdani-type FIS called BDFIS has been 
proposed and detailed in this paper. However, upon further 
analysis, it was found that the consequence determination lacks 
some of its former expressibility. The reason behind this comes 
from the fact that the output linguistic terms and distribution 
functions are now fixed, i.e. FDCs and singleton functions 
respectively, while these functions could be defined freely in a 
standard FIS. This forces the rule strengths for the FDCs to be 
calculated directly from the input linguistic terms, where 
abstract concepts such as Expertise could be defined in a 
standard FIS instead. Thus, the ability to define abstract concepts 
is hindered to some degree.  

While this fact may not impact use cases with simpler access 
control policies, it can impact the interpretability of the defined 
rules in others. Consider a rule that defines the vague concept of 
Expertise, such as “if Number_of_Publications is High then 
Expertise is High". If someone is newly hired to manage a 
system that uses this rule, it is clear what it is expressing: the 
expertise of the subject.  

As is, the BDFIS would need the input variables to be 
mapped directly to the output decision variables, meaning that 
the Expertise vague concept cannot be explicitly defined or used 
in the mapping to the FDCs. Thus, a new security expert would 
need more detailed external documentation to understand what 
the rules are meant to represent to master the system, to write 
new rules, etc. However, it is possible to add a second layer of 
rules and intermediate variables to allow this (or more for 
additional abstraction). The input linguistic terms are mapped to 

these intermediate variables, which can include vague concepts 
like Expertise, and then these variables are mapped to the FDCs. 
This approach allows for rules to remain easily interpretable by 
humans at the cost of some processing.  

IV. PROOF OF CONCEPT 

In this section, a proof of concept of the BDFIS will be 
shown. The prototype of the BDFIS used for this proof of 
concept uses JFuzzyLogic[30][31] and is available at 
github.com/Regateiro/FuzzyAC/tree/master/java/BDFIS. The 
academic.fcl file defines a BDFIS that makes access control 
decisions based on the expertise of a subject, using the Fuzzy 
Control Language (FCL)[32]. The BDFIS also comprises of two 
blocks of variables and rules, the first calculates the degree of 
expertise of the subject and the second the access control 
permissions. Fig. (2) shows the output of the proof of concept 
BDFIS implementation using the provided FCL file. 

Figure 2.  Sample BDFIS implementation output. 

The defined BDFIS takes two input variables: the number of 
publications (omitted); and the number of citations (lines 1-4). 
These are used to determine the Expertise of the subject in the 
first set of rules (lines 6-10). The Expertise is then applied in the 
second set of rules to calculate the FDCs for a Read and Write 
permissions (lines 12-18). These are necessary to calculate 
whether the subject is granted each permission, by checking if 
the final defuzzified value is greater than 0.5 (grant) or not 
(deny). This value can be modified by an expert to require 
subjects to have lower or higher membership degrees to be 
granted access. 

The numbers to the right of the input and output variables 
denote the crisp value associated with them (either provided as 
input or calculated from defuzzification). The number to the 
right of the terms denote their associated membership degrees. 
These are calculated from piecewise linear membership 
functions and rules defined by an expert in the academic.fcl file 
using the steps and methods explained in this paper. The BDFIS 
implementation automatically passes the Expertise value 
calculated by the first set of rules to the second set of rules as an 
input. Finally, since the Read permission has the output value 
1.0 > 0.5, it is granted, and the Write permission with the output 
value 0.275862 < 0.5 is denied.  

 



V. DISCUSSION 

In this paper, a FIS that can make binary access control 
decisions was proposed. Through the analysis made to each 
processing step, several changes were introduced that allowed a 
Mamdani-type FIS to specialize in the output of binary 
decisions. Furthermore, some proposed modifications optimized 
the output generation process, making this type of systems to 
have the potential for deployment in access control scenarios 
that deal with vague knowledge. Given the broad spectrum of 
areas where FIS are used, it shows that they are useful if 
correctly defined. By creating the BDFIS as closely as possible 
to a standard FIS, it is expected that it can be just as effective in 
access control scenarios. 

One might question the appropriateness of applying fuzzy set 
theory to model access control since its inherent vagueness 
prevents an expert from easily knowing if a subject can access 
the protected data or not. Furthermore, auditing such a system is 
not easy given that new subjects may request access at any time.  

Due to the vague nature of the fuzzy access control rules, the 
exact ranges of input values that grant access to the data is not 
clear. Thus, the possibility that an unexpected combination of 
input values granting access to the data may exist. It is important 
to note, however, that such a fuzzy access control model would 
still be deterministic. Furthermore, since vague conditions are 
applicable to a range of input values (with varying membership 
degrees), fewer rules are needed when compared to classic 
models, which generally requires each combination of input 
values to be written down as a separate rule. Nonetheless, fuzzy-
based access control models are not easily accepted to manage 
sensitive data (e.g. hospital patient data), understandably due to 
the issues related to its inherent vagueness.   

For future work, it is intended to build a system that can audit 
a BDFIS for correctness, an important feature for any access 
control system to have, and the calibration of the threshold 
values. Since the subject parameters used as input values are 
fuzzified, it is hard to determine from the fuzzy rules if they have 
access to a resource or not. Thus, being able to determine which 
input values grant or deny access is an important step towards 
making BDFIS a viable part of an access control system. 
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