

AAMR: Automated Anomalous Microservice

Ranking in Cloud-Native Environment

Zekun Zhang, Bing Li, Jian Wang, Yongqiang Liu

School of Computer Science,

Wuhan University,

Wuhan, China

e-mail: jianwang@whu.edu.cn

Abstract— Recently, it has become a trend for developers to

build applications using the microservice architecture. The

functionality of each application is divided into multiple

independent microservices, which are interconnected to others.

With the emergence of cloud-native technologies, such as Docker

and Kubernetes, developers can achieve a consistent and scalable

delivery for complex software applications. However, it is

challenging to diagnose performance issues in microservices due

to the complex runtime environments and the numerous metrics.

In this paper, we propose a novel root cause analysis approach

named AAMR. AAMR firstly constructs a service dependency

graph based on real-time metrics. Next, it updates the anomaly

weight of each microservice automatically. Finally, a PageRank-

based random walk is applied for further ranking root causes, i.e.,

ranking potential problematic services. Experiments conducted on

Kubernetes clusters show that the proposed approach achieves a

good analysis result, which outperforms several state-of-the-art

methods.

Keywords—Microservice, Anomaly detection, Root cause

analysis, Cloud-native system

I. INTRODUCTION

Nowadays, microservice architectures (MSA) have become
increasingly popular in large-scale software development
following different computing paradigms like cloud computing,
mobile computing, and edge computing. MSA-based software
applications are decomposed into light-weighted,
interconnected, independently deployed, and scalability-enabled
microservices [1]. With the decomposition, the process of
testing, deploying, and releasing becomes faster. However, as
user requirements change, software code commits, and version
updates become increasingly frequent. Many unexpected issues
may arise, which have a significant impact on service quality
and user experience. It is important for developers to figure out
the root causes of system failures and mitigate them.

Traditionally, system failures are usually pinpointed by
checking the log and event tracking, and then the performance
issues are analyzed based on monitoring tools [2]. With the
increasing scale and complexity of software, service
dependencies also become increasingly complex, making these
tools hard to achieve the needs of troubleshooting and diagnosis.
In general, when an anomaly occurs in microservice systems,
the anomaly detected is merely a symptom, and the root cause
often hides from a larger underlying issue. Particularly, if a
microservice becomes abnormal, e.g., response time delay or

interruption of work, most of the microservices collaborated
with it will be implicated. Therefore, it is necessary to detect
undesirable performance problems and pinpoint the underlying
anomalous microservice (root cause).

At present, the challenges of locating potential root causes
are (i) Large volume of metrics: Communications between
services are plenty and frequent, which cause a large volume of
monitoring metrics (e.g., OpenStack exposes 17,608 metrics
[3]). It is challenging to pinpoint the bottleneck from numerous
and diverse metrics. (ii) Different failure sources: The failures
might be caused by upstream or downstream tasks in the
propagation direction. Besides, the wrong deployments and
insufficient resource utilization can also cause failures. (iii)
Highly dynamic in runtime: Due to the flexibility of
microservices, the IP address of a microservice may
dynamically change in creating a replica. The scalability of
replicas further enlarges the service correlation and the
complexity of locating anomalies.

Many existing works on root cause analysis have been
reported. Most of these works [4-8] localize the root cause by
constructing a service dependency graph (SDG) [10] based on
monitored metrics. With the SDG, the anomalous microservices
are commonly ranked by the similarity between back-end
services and front-end services. However, services that have
little impact on front-end services are missing in the diagnosis.
As for metrics, parts of these works [5, 6] only use application-
level metrics, which is insufficient for analysis. Some works [7,
8] consider multiple metrics while missing the key metrics
ranking. To address these limitations, we propose a novel
approach to detect anomalies and locate the root cause in
microservice systems.

If there is an anomalous node in the service network, the
nodes associated with it are likely affected. Inspired by the
mRank [9] algorithm, we use adjacent nodes to represent the
anomaly score of the target node. As for input, we collect
multiple metrics, including system utilization and application-
level metrics. Our goal is to localize the root cause and highlight
the key anomalous metric, which helps developers diagnose
system failures. We evaluate our approach on Kubernetes
clusters and inject several common failures that occur in cloud-
native systems. The results show that our approach outperforms
several state-of-the-art methods in localizing accuracy. In
summary, our contributions include:

• We extend the mRank algorithm for root cause analysis in
microservices. Our method can automatically update the
anomaly weights in SDG. ___

DOI reference number: 10.18293/SEKE2021-091

• We evaluate our method in a cloud-native environment.
The experimental results show that our approach has
higher accuracy and faster than other baseline methods on
the benchmark.

The remainder of this paper is organized as follows. Related
works are summarized in Section II. Section III formulates the
problem. We elaborate on our proposed approach in Section IV.
Experiments and evaluations are included in Section V. The
conclusion and future work are given in Section VI.

II. RELATED WORK

Root cause analysis for distributed systems has been devoted
in the industry and academia for years. Existing approaches in
this area can be approximately classified into four types.

Trace-based methods. Many tools and systems on end-to-
end tracing like Dapper [11], Pinpoint [12], and EagleEye [13]
collect the trace information. These tools can accurately record
the execution path of programs and then locate the failure by
detecting the source code or binary code. However, a large-scale
system is usually developed by many teams with different
languages over the years, and the overhead of modifying its
source code is often too high [14].

Log-based methods. The system log is an important clue for
analysis [2]. By parsing patterns and extracting features from
event logs, Xu et al. [15, 16] built anomaly detection and
identification models from historical data and used these models
to analyze root causes. However, as the application flexibility
increases, these methods are less effective in analyzing the
anomalies in real-time.

Machine learning-based methods. Some researchers use
the metrics collected as training data, instead of logs, to train
models. Brandón et al. [17] constructed fault patterns from
several fault injection methods. The anomalies are classified by
comparing the similarity between the anomaly graph and fault
patterns. Moreover, Du et al. [18] collected real-time
performance data such as CPU, memory, response time, and
package loss to build a model for anomaly detection. GRANO
[19] created an anomaly analysis model and visualized the
analysis result. But these approaches require collecting a large
amount of data for model training, and these models cannot
cover all anomalous patterns.

Graph-based methods. Many graph-based approaches are
also proposed based on real-time performance metrics. For
example, CloudRanger [6] constructed an impact graph based
on the dynamic causal relationship. Microscope [5] added
anomalous nodes into a candidate group and then ranked the
anomalous nodes in the candidate group based on the correlation
coefficients between nodes. But only application-level metrics
are included in their works, which is insufficient for analysis. To
solve such problems, MicroCause [20] used multi-metric and
captured the sequential relationship of time series data, and MS-
Rank [7] updated the weights of different metrics dynamically.
These methods used forward, self, and backward random walk
to heuristically locate root causes. Besides, Weng et al. [21]
found that anomalies occur on both the service and physical
level. MicroRCA [8] correlated anomalous performance
symptoms with relevant resource utilization to represent service
anomalies. However, MicroRCA cannot update the anomaly
detection confidence (i.e., weights in SDG) automatically.

Similar to graph-based approaches, we also use a graph
model and rank the anomalies using a random walk algorithm.
In our approach, we automatically update the anomaly weights
in SDG and output a two-phase ranking list that contains the
anomalous nodes and metrics.

III. PROBLEM DEFINITION

To generalize the problem, we treat the microservice system
as a “black box” that requires no domain knowledge, and the
root cause analysis process is running independently. Many
reasons can cause abnormal events in microservices, such as
sudden increases in throughput, errors in code logic, and
insufficient allocation of host resources. We refer to the process
of diagnosing those anomalous nodes and the metrics
responsible for the abnormal events as root cause analysis. The
identification of anomalous nodes is regarded as root cause
localization. We monitor the metrics change of all microservices
in the system by default. These metrics are collected as a matrix
in time window T. We denote the matrix as M, and Mk stands for
the metrics in column k. Our objective is to identify a set of root
causes Vrc and rank the associated metrics for each root cause.
The notations used in the paper are listed in Table I.

TABLE I. NOTATIONS

Notation Definitions

G(V, E, W) Service dependency graph with weight matrix W

M, Mk Metrics collected in T and metrics in column k

Vi, hi Microservice node i and the host node of Vi

P, pij

[P]ij = pij, transition probability from Vi to Vj

RTi Response time series of Vi in T

∆t, T Time unit for metric collection and the time window

 Vfe, Vrc Front-end service and root cause services

ADs, AS The clustering result of RTi and the anomaly score

IV. APPROACH DESIGN

This section introduces the detail of the proposed root cause
analysis approach.

A. Overall Framework

To address the above issues, we propose a novel root cause
analysis approach named AAMR (short for Automated
Anomalous Microservice Ranking). Fig. 1 shows the overall
framework of AAMR, which consists of five stages:

S1: Collect system and application-level metrics as the input;
S2: Detect anomalies;
S3: Construct the service dependency graph;
S4: Update the anomaly weights in SDG;
S5: Rank the anomalous nodes and metrics.
S1 and S2 run continuously by default. Once anomalies are

detected, the following stages are triggered. We discuss the
components of AAMR in detail in the following parts.

B. Data Collection

Root cause analysis is based on performance metrics
obtained by monitoring applications. Since a single metric is
insufficient to reflect the anomalous degree [7], similar to [4, 5,

8], we collect metrics at different levels: (i) System-level
Metrics. These metrics are resource utilization metrics
monitored at the physical server or virtual machine layer (e.g.,
CPU, memory, and network utilization of the host node). (ii)
Application-level Metrics. Application-level metrics include
performance metrics observed at the application layer, such as
response time, workload, and network connection.

Figure 2. An example of AANs and NHANs

C. Anomaly Detection

 Anomaly detection is the beginning of root cause analysis.
We use the BIRCH [22] clustering algorithm for anomaly
detection, which is simple but effective. We continually monitor
the response time of each microservice by default. BIRCH takes
the RTi collected of each microservice in T as input. As a result,
the RTi is divided into n clusters without predefined. It is noticed
that the response time of different microservices varies with
different business processes. For example, if Va handles a single
business process and Vb handles compound business processes.
The response time of Va is shorter than Vb in most cases. So we
cluster RTi for each microservice instead of overall
microservices. If the cluster result ADs of a microservice
exceeds 1, it indicates this node is anomalous. Instead of simply
detecting anomalies [8], we further define the anomaly score (AS)
of this node as ADs-1 to represent the basic anomalous degree
of each microservice.

D. Service Dependency Graph Construction

We construct a service dependency graph based on the
network connection between services to represent the anomaly
propagation. If service Va sends a connection request to service
Vb, we add a directed edge from Va to Vb. As for duplicate edges,
only one connection is counted to avoid redundancy. By

integrating all network connections, we end up with a service
dependency graph G(V, E, W). It is a weighted DAG (Directed
Acyclic Graph) that describes the dependency between services.
Here V, E, W indicate microservice nodes, SDG edges, and the
anomaly weights, respectively. Considering that some
microservice connections may fail due to anomalies at the
current moment, we choose the network connection details from
the moment before time window T for the SDG construction.

E. Automated Anomaly Weight Updating

Once the SDG is constructed, the following processes start
to locate the root cause. According to the mRank algorithm [9],
if there is an anomalous node in the service network, then the
nodes associated with the anomalous node are likely affected.
However, it is also possible that other nodes cause the anomalies
of these nodes. Therefore, to infer the possibility of a node being
abnormal, we need to consider the nodes related to its neighbors.
We define AAN(Vi) as the anomalous-adjacent nodes of node Vi.
Further, we define NHAN(Vi) as the next-hop-anomalous nodes
of node Vi, that is, the anomalous nodes that directly connect to
AAN(Vi). For example, for node A in Fig. 2, AAN(A) consists of
B, D, E, and F. And NHAN(A) includes all the anomalous nodes
that are connected to B, D, E, and F. Then we define two
measurements to quantify the anomaly of a node in the
following.

 Definition 4.1 (iScore). iScore of a microservice Vi in SDG
is defined as:

𝑖𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) =
∑ 𝐴𝑆(𝑉𝑗)𝑁

𝑗=1

𝐷𝑒𝑔𝑟𝑒𝑒(𝑉𝑖)
 , 𝑉𝑗 ∈ 𝐴𝐴𝑁 (𝑉𝑖), (1)

where AS(Vi), Degree(Vi), and N denote the anomaly score of Vi,
the degree of Vi, and the number of AAN(Vi), respectively. As
for NHAN(Vi) we define:

Definition 4.2 (xScore). xScore of a microservice Vi in SDG
is defined as:

𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) = 𝑥(𝑉𝑖) −
∑ 𝐴𝑆(𝑉𝑗)𝑁

𝑗=1

∑ 𝐷𝑒𝑔𝑟𝑒𝑒(𝑉𝑗)𝑁
𝑗=1

, 𝑉𝑗 ∈ 𝑁𝐻𝐴𝑁(𝑉𝑖), (2)

where x denotes the average anomaly score of HNAN(Vi). Here
iScore indicates the anomalous degree of AAN(Vi), and xScore
reflects the normality of NHAN(Vi). We count the redundant
AS(Vi) and Degree(Vi) only once. For example, in Fig. 2,

Figure 1. The overall framework of AAMR

network connection

response time

container cpu

node memory

node I/O

…

S4: Weight Updating (d)S2: Anomaly Detection (b)

Anomaly Scores:

ms1: 0

ms2: 2

ms3: 1

RT of ms1

RT of ms2

RT of ms3

System-level Metrics

ms1 > ms2 (http)

ms2 > ms3 (http)

ms2 > ms4 (tcp)

ms3 > ms5 (http)

Rank1:ms3

CPU

Memory

Thoughput
I/O

Rank2:ms2

Throughput

Memory

I/
CPU

Rank3:ms1

Error Count
CPU

I/O
Throughput

S5: Two-phase Ranking (e)

Network Connections

Anomaly Scores

Weight Update PPR

S1: Metrics collection (a)

S3: SDG Construction (c)

SDGApplication-level Metrics

frontend 10 0.4 0.6 12 0.5 11 9 10.2 14

ms1 1.3 0.4 0.2 0.6 0.1 0.2 0.4 0.1 0.8

ms2 10 0 0 12 0 10 9.5 10 12.5

ms3 0.6 0.7 0.5 1.3 0.3 0.5 0.7 0.3 0.4

ms4 0.5 0 0.1 0.2 0.2 0.5 1 0.1 0.2

ms4 0.2 0.6 1 0.7 1.3 0.2 0.6 1 0.7

ms4 0.1 0.8 1.3 0.7 1.3 0.1 0.8 1 0.6

Anomalies Clustering

iScore

xScore

Weights

System Input

iScore(A), x(A), and xScore(A) are 1.5, 1.67, and 1, respectively.
Then we define ixScore(Vi) as:

𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) = 𝑖𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) + 𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖). (3)

Clearly, ixScore(Vi) is used to combine the multiple pieces
of evidence with node Vi itself and its neighbors. If most
neighbors of node Vi are anomalous and most neighbors of its
AAN(Vi) are normal, node Vi is more likely to be the root cause.

In addition, as presented in [8], the resource utilization of
host node hi and the response time of deployed microservices
(e.g., Vi) on hi are correlated. For simplicity, we calculate the
correlation between the response time metrics of Vfe (|M|fe) and
system utilization metrics of hi (|M|i) as follows:

𝐶𝑜𝑟𝑟(𝑉𝑓𝑒 , ℎ𝑖) =
∑ (|𝑀|𝑓𝑒 − |𝑀|𝑓𝑒)𝑇

𝑡=0 (|𝑀|𝑓𝑒 − |𝑀|𝑖)

√∑ (|𝑀|𝑓𝑒 − |𝑀|𝑓𝑒)
2

𝑇
𝑡=0

√∑ (|𝑀|𝑓𝑒 − |𝑀|𝑖)
2

𝑇
𝑡=0

. (4)

 This correlation function is the Pearson correlation
coefficient between the metrics of Vfe and hi. The value falls in
[0,1]. In normal cases, the correlation between Vfe and hi is closer
to 0. Besides, the system utilization of hi such as CPU, memory,
I/O, and network utilization are ranked as the second phase
ranking. The max value of Corr(Vfe, hi) indicates the key
anomalous metric. Finally, the anomaly weight w of Vi can be
updated as:

𝑤(𝑉𝑖) = 𝑖𝑥𝑆𝑐𝑜𝑟𝑒(𝑉𝑖) × max 𝐶𝑜𝑟𝑟(𝑉𝑓𝑒 , ℎ𝑖). (5)

Each time an anomaly is detected based on real-time metrics,
the anomaly weight for each microservice in the SDG is
recalculated for automatically updating. As shown in Fig. 3, the
composition of w is the final anomaly weights W in the SDG.
Then we normalize W for the random walk algorithm.

Figure 3. Example of anomaly weights in the SDG

F. Root Causes Ranking

Some methods [5, 23] rank the anomalies by the nodes or
traces similarity. However, the microservices on root cause
embedded request trace would be treated as anomalous with
these methods. Moreover, the updated ixScore is based on its
neighbors, and it is limited in a small range. To solve the above
problems, we surfer from the whole SDG for further ranking the
anomalies with the Personalized PageRank (PPR) algorithm,
which performs well in the previous works [8, 20]. In the PPR
algorithm, we use Personalized PageRank vector v to represent
the anomaly weight in the SDG. And we define the transition
probability matrix as P. Those nodes with a higher AS would
have a higher access probability.

With PPR, we get the ranking list of root causes as the first
phase ranking. Then we associate the root causes with the
anomalous metrics ranking (the second phase) to get a two-
phase ranking list, which helps developers mitigate the
microservice failures, as shown in Fig. 1(e).

V. EXPERIMENTS

In this section, we conducted experiments to compare our
method with several state-of-the-art techniques. The
experiments were designed to answer three research questions:

• RQ1: Does the proposed method outperform the state-of-
the-art approaches in terms of different anomaly cases?

• RQ2: Is our approach effective enough to locate the root
cause with fast speed?

• RQ3: Can our approach adapt to large-scale systems?

A. Setup

1) Experiment Settings. We evaluated the prototype of

AAMR on two physical servers. Each physical server has an 8-

core 2.40GHz CPU, 16GB of RAM, and Ubuntu 16.04 OS. And

we installed Kubernetes 11.3.1, Istio1 1.4.5, Node Exporter2 1.41,

and Prometheus3 6.3 on these servers for environment

configuration. We used one server to run our system and another

server to simulate the workload.

2) Benchmark. The benchmark of experiments is an online

shop microservice system named Online-boutique4, which

contains 11 microservices. Particularly, since three

microservices are mocked and a microservice is used for load

generation, effects on these microservices are rather low, and

we deployed them on the Kubernetes clusters but excluded

them from the evaluation.

TABLE II. WORKLOAD GENERATION DETAIL

MS cart payment currency checkout catalog frontend recommendation

users 100 100 100 100 100 100 100

rate(/s) 30 10 20 10 100 10 20

3) Data Collection. The workload was generated by Locust5,

a distributed load testing tool that simulates concurrent users in

an application. Considering real user scenarios, we simulate

different request rates for different microservices as shown in

Table II. For system-level metrics, we used Node Exporter to

collect CPU, memory, I/O, and network utilization metrics. And

we used Prometheus, an open-source monitoring tool, to collect

response time metrics. These metrics are collected at five-

second intervals, and T is set as 150 seconds.

4) Fault Injection. To simulate real-world performance

issues, we injected the following three types of failures: (i)

Latency Delay. We used the feature of Istio to add a virtual

service to instances, which has the effect of increasing the

0.43

0
0.4

0.01

0.2

0.21

0.02

0.18

0.5

0

0

0

0.04

0

0

0.9

0

0.09

0

0.64

0

Normal

0

0

Anomalous

———————————————————————

1 https://istio.io
2 https://github.com/prometheus/node_exporter
3 https://prometheus.io
4 https://github.com/GoogleCloudPlatform/microservices-demo
5 https://locust.io

https://istio.io/

response time of a specified instance to 300ms. (ii) CPU Hog.

The performance issue may be caused by the insufficient CPU

allocated to the host. We used stress-ng1 to stress the system

CPU to 99% usage. As for container CPU usage, we limited the

utilization of the injected instance by setting Kubernetes

configurations. (iii) Container Pause: The “docker pause”

command triggers a pause operation on the specified container.

The container cannot be shut down directly because of the

protection mechanism of Kubernetes.

5) Evaluation Metrics. To quantify the performance of each

algorithm, we adopt the same evaluation metrics defined in [6]:

• Accuracy at top k (AC@k) indicates the probability that
the top k on the ranking list hits the real root cause for all
given anomaly cases. A higher AC@k score represents the
algorithm identifying the root cause more accurately. In
experiments, we choose k=1 and 3. Let R[i] be the rank of
each cause and Vrc be the set of root causes. AC@k is
defined on a set of anomalies A as:

𝐴𝐶@𝑘 =
1

𝐴
∑

∑ (𝑅[𝑖] ∈ 𝑉𝑟𝑐)𝑖<𝑘

(min(𝑘, |𝑉𝑟𝑐|))
𝑎∈𝐴

 (6)

• Average accuracy at top k (Avg@k) quantifies the overall
performance of an algorithm, where n is the number of
microservices. It is defined as:

𝐴𝑣𝑔@𝑘 =
1

𝐴
∑ ∑ 𝐴𝐶@𝑘

1≤𝑘≤𝑛𝑎∈𝐴

 (7)

6) Baseline Methods. To evaluate the performance of

AAMR, we compared it to the following baseline methods:

• Random Selection (RS): Random selection randomly
selects the possible anomalous microservices among all
nodes without any domain knowledge.

• Microscope: Microscope [5] is a graph-based method to
locate root causes. For Microscope implementation, we
used the 3-sigma principle to detect anomalies and then
added these anomalies into a candidate group. We
collected the response time for calculating the similarity
and ranking the anomalies in the candidate group.

• MicroRCA: MicroRCA [8] extracts an anomalous
subgraph based on the SDG. For root cause localization,
MicroRCA uses a Personalized PageRank algorithm,

which is extended in our approach. To implement
MicroRCA, we clustered the RTi of microservices to
extract the subgraph of anomalous nodes.

B. RQ1: Performance Comparison

We tested the performance of AAMR for different fault
injection cases. Table III shows the performance in terms of
AC@1, AC@3, and Avg@3 for all methods. We can observe that
AAMR outperforms the baseline methods in most cases. In 10-
round experiments, AAMR achieves an accuracy of 91% for
AC@1 and 94% for Avg@3 on average, which outperforms the
state-of-the-art methods. The result shows that AAMR gets
3.2% and 9.0% improvement than MicroRCA and Microscope
for AC@3, respectively. It is also noticed that the experimental
result of the CPU hog case is not as good as other cases because
only computation-sensitive microservices are affected in the
CPU hog case, e.g., the checkout service and recommendation
service in Online-boutique.

TABLE III. PERFORMANCE COMPARISON

Metric RS MicroRCA Microscope AAMR Improvement

to MicroRCA

Improvement

to Microscope

Overall

AC@1 24% 90% 85% 91% +1.1% +7.0%

AC@3 38% 94% 89% 97% +3.2% +9.0%

Avg@3 31% 92% 90% 94% +2.2% +4.4%

Latency Delay

AC@1 22% 92% 87% 94% +2.2% +8.0%

AC@3 43% 95% 90% 97% +2.1% +7.6%

Avg@3 37% 92% 90% 95% +3.3% +5.5%

CPU Hog

AC@1 25% 49% 39% 48% -2.0% +23.1%

AC@3 36% 68% 59% 70% +2.9% +18.6%

Avg@3 35% 69% 61% 70% +1.5% +14.7%

Container Pause

AC@1 33% 92% 90% 95% +3.3% +5.6%

AC@3 37% 100% 98% 100% 0% +2.0%

Avg@3 41% 97% 94% 98% +1.0% +4.3%

In Fig. 4, we compared the performance of each method on
different microservices. The result shows that AAMR
outperforms other methods in most fault injection cases.
MicroRCA performs better in some CPU hog cases because it
calculates the correlation between the anomalous node and the
host node, which is more accurate but has a higher overhead.
However, AAMR performs better on average.

Figure 4. Performances of RS, MicroRCA, Microscope, and AAMR on different microservices

———————————————————————

1 https://kernel.ubuntu.com/cking/stress-ng

https://kernel.ubuntu.com/cking/stress-ng

C. RQ2: Localization Time Comparison

Besides accuracy, developers expect to locate anomalies
quickly. We set all methods running continuously, and only the
top 1 ranking hits the root cause three times consecutively is
considered successful. Table IV shows that the execution time
of locating the root cause varies from methods, and AAMR takes
less time to locate the root cause, i.e., 78% and 72% faster than
Microscope and MicroRCA. Here the RS method is excluded in
the comparison because of low accuracy.

TABLE IV. LOCALIZATION TIME COMPARISON

MS cart payment currency checkout catalog frontend reco. Avg

MicroRCA 15.2s 28.1s 33.5s 12.8s 9.4s 9.7s 26.3s 19.3s

MicroScope 6.7s 39.4s 43.5s 8.8s 29.4s 11.9s 32.5s 24.6s

AAMR 3.3s 2.1s 2.0s 7.3s 2.1s 6.4s 14.2s 5.4s

D. RQ3: Scalability Comparison

 Scalability is the main feature of microservice systems. It is
noticed that scaling out service replicas will increase the size of
the SDG and make it more complicated to locate the root cause.
We evaluated the impact of scaling out replicas from 1 to 10 for
each microservice in Online-boutique. Fig. 5 shows that AAMR
consistently maintains an accuracy of 82-91% for AC@1, which
is higher than the state-of-the-art methods.

Figure 5. Comparison of scalability

VI. CONCLUSION AND FUTURE WORK

In this paper, we design a root cause analysis approach
named AAMR. We extend the mRank algorithm to measure the
anomaly weight of a node based on its adjacent nodes. After
detecting the anomalies by a simple but effective clustering
method, we give a two-phase ranking, which helps developers
quickly diagnose the system failures. Experiments show that
AAMR has an accuracy of 91% and an average accuracy of 94%,
which outperforms the state-of-the-art methods.

In the future, we plan to cover more anomaly patterns by
adding more metric types. Besides, we will try injecting more
faults to test the performance of AAMR in case that multiple
anomalies occur at the same time.

VII. ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2018YFB1402800) and the National Natural
Science Foundation of China (Nos. 62032016 and 61832014).

REFERENCES

[1] S. Newman, Building Microservices, O’Reilly Media, Inc, 2015.

[2] M. Cinque et al, “Microservices Monitoring with Event Logs and Black
Box Execution Tracing,” IEEE Trans. Serv. Comput., pp. 1–1, 2019.

[3] J. Thalheim et al., “Sieve: actionable insights from monitored metrics in
distributed systems,” in IMC, Las Vegas Nevada, Dec. 2017.

[4] K. Myunghwan, S. Roshan, and S. Sam, “Root Cause Detection in a
Service-Oriented Architecture,” SIGMETRICS, 2013.

[5] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint Performance Issues
with Causal Graphs in Micro-service Environments,” ICSOC, p. 18, 2018.

[6] P. Wang et al., “CloudRanger: Root Cause Identification for Cloud Native
Systems,” in CCGRID, Washington, DC, USA, May 2018, pp. 492–502.

[7] M. Ma and W. Lin, “MS-Rank: Multi-Metric and Self-Adaptive Root
Cause Diagnosis for Microservice Applications,” ICWS, 2019.

[8] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root Cause
Localization of Performance Issues in Microservices,” in NOMS,
Budapest, Hungary, Apr. 2020, pp. 1–9.

[9] Y. Ge, G. Jiang, M. Ding, and H. Xiong, “Ranking Metric Anomaly in
Invariant Networks,” ACM Trans. Knowl. Discov. Data (TKDD), vol. 8,
no. 2, pp. 1–30, Jun. 2014.

[10] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using Service Dependency Graph to Analyze and Test Microservices,”
in COMPSAC, Tokyo, Japan, Jul. 2018, pp. 81–86.

[11] B. H. Sigelman et al., “Dapper, a Large-Scale Distributed Systems
Tracing Infrastructure,” GTR, p. 14, 2010.

[12] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
problem determination in large, dynamic Internet services,” in ICDSN,
Washington, DC, USA, 2002, pp. 595–604.

[13] Z. Cai, W. Li, W. Zhu, L. Liu, and B. Yang, “A Real-Time Trace-Level
Root-Cause Diagnosis System in Alibaba Datacenters,” Access, vol. 7, p.
11, 2019.

[14] P. Liu et al., “FluxRank: A Widely-Deployable Framework to
Automatically Localizing Root Cause Machines for Software Service
Failure Mitigation,” in ISSRE, Berlin, Germany, Oct. 2019, pp. 35–46.

[15] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles -
SOSP ’09, Big Sky, Montana, USA, 2009, p. 117.

[16] T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, and J. Xu, “An Approach for
Anomaly Diagnosis Based on Hybrid Graph Model with Logs for
Distributed Services,” in 2017 IEEE International Conference on Web
Services (ICWS), Honolulu, HI, USA, Jun. 2017, pp. 25–32.

[17] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and V. Muntés-
Mulero, “Graph-based root cause analysis for service-oriented and
microservice architectures,” Journal of Systems and Software (JSS), vol.
159, p. 110432, Jan. 2020.

[18] Q. Du, T. Xie, and Y. He, “Anomaly Detection and Diagnosis for
Container-Based Microservices with Performance Monitoring,” ICA3PP,
p. 13, 2018.

[19] H. Wang et al., “GRANO: interactive graph-based root cause analysis for
cloud-native distributed data platform,” Proc. VLDB Endow., vol. 12, no.
12, pp. 1942–1945, Aug. 2019.

[20] Y. Meng et al., "Localizing Failure Root Causes in a Microservice
through Causality Inference," 2020 IEEE/ACM 28th International
Symposium on Quality of Service (IWQoS), 2020, pp. 1-10.

[21] J. Weng, J. H. Wang, J. Yang, and Y. Yang, “Root Cause Analysis of
Anomalies of Multitier Services in Public Clouds,” TON, p. 14, 2018.

[22] A. Gulenko, F. Schmidt, A. Acker, M. Wallschlager, O. Kao, and F. Liu,
“Detecting Anomalous Behavior of Black-Box Services Modeled with
Distance-Based Online Clustering,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), 2018, pp. 912–915.

[23] L. Meng, F. Ji, Y. Sun, and T. Wang, “Detecting anomalies in
microservices with execution trace comparison,” FGCS, vol. 116, pp.
291–301, Mar. 2021.

	I. Introduction
	II. Related Work
	III. Problem Definition
	IV. Approach Design
	A. Overall Framework
	B. Data Collection
	C. Anomaly Detection
	D. Service Dependency Graph Construction
	E. Automated Anomaly Weight Updating
	F. Root Causes Ranking

	V. Experiments
	A. Setup
	1) Experiment Settings. We evaluated the prototype of AAMR on two physical servers. Each physical server has an 8-core 2.40GHz CPU, 16GB of RAM, and Ubuntu 16.04 OS. And we installed Kubernetes 11.3.1, Istio1 1.4.5, Node Exporter2 1.41, and Prometheus...
	2) Benchmark. The benchmark of experiments is an online shop microservice system named Online-boutique4, which contains 11 microservices. Particularly, since three microservices are mocked and a microservice is used for load generation, effects on the...
	3) Data Collection. The workload was generated by Locust5, a distributed load testing tool that simulates concurrent users in an application. Considering real user scenarios, we simulate different request rates for different microservices as shown in ...
	4) Fault Injection. To simulate real-world performance issues, we injected the following three types of failures: (i) Latency Delay. We used the feature of Istio to add a virtual service to instances, which has the effect of increasing the response ti...
	5) Evaluation Metrics. To quantify the performance of each algorithm, we adopt the same evaluation metrics defined in [6]:
	6) Baseline Methods. To evaluate the performance of AAMR, we compared it to the following baseline methods:

	B. RQ1: Performance Comparison
	C. RQ2: Localization Time Comparison
	D. RQ3: Scalability Comparison

	VI. Conclusion and future work
	VII. ACKNOWLEDGMENT
	References

