
HaeNAS: Hardware-Aware Efficient Neural
Architecture Search via Zero-Cost Proxy

Yaodanjun Ren†, Chen Chen†, Zhengwei Qi†
†Shanghai Jiao Tong University

§State Key Laboratory of Mathematical Engineering and Advanced Computing

Abstract
The practical use of advanced DNN models is hindered by
limited hardware resources and high computation demands.
Neural Architecture Search (NAS) is becoming a default tech-
nique which automatically discovers architectures that are
competitive with handcraft ones. However, existing meth-
ods only prioritize accuracy and overlook hardware-related
factors. To address this, we introduce HaeNAS (Hardware-
aware efficient NAS), which considers both accuracy and
computation cost on specific hardware platforms. The search
space of HaeNAS consists of several stages, each allowing
different convolution kernels, layer numbers, layer widths,
and operation types. We use a data-driven approach to pre-
dict the latency and energy consumption on target hard-
ware, and we improve the zero-cost proxy based on network
pruning research to speed up the NAS process. With these
techniques, HaeNAS finds a target network within 160 GPU
hours, which achieves 80.7% top-1 accuracy on the ImageNet,
with a latency of 10.4ms and energy consumption of 931mJ.

Keywords: neural architecture search, convolutional neural
network, evolution algorithm, neural network acceleration

DOI reference number: 10.18293/SEKE2023-116

1 Introduction
Deep neural network models have achieved impressive re-
sults in various applications [8, 11]. However, running AI
applications on specific hardware must not only achieve high
accuracy but also meet latency and energy constraints. Thus,
the high computation demands required by high accuracy
hinder the practical application of DNNmodels in real-world
scenarios, especially on embedded or edge devices.
Many recent studies have attempted to improve the ef-

ficiency of CNN models by utilizing software-related or
hardware-related optimization methods [13]. In the hard-
ware domain, a popular approach is to leverage the specific
hardware characteristics of hardware devices such as GPUs,
FPGAs, and NPUs to enhance the inference and training
speed of DNNs. However, for a given DNN model, hardware
optimization is constrained by the computation and stor-
age resources inherent in the hardware itself. Optimization
solutions on the software side have also received attention
from researchers, such as model pruning and quantization.
For example, network pruning methods usually reduce the

1. Search Space

①layer number
of stages

② operation
type of blocks

③ convolution
kernel size

④ expansion
ratio of blocks

IBN

Fused IBN

Sample

Deploy

Benchmark

Prediction
Model

latency, energy

Target
hardware

Dataset

population mutation evaluation

· · · · · ·

2. Hardware aware evolution search

a minibatch

3. Post processing

Scaling & SE block

Figure 1. The framework of HaeNAS.

parameter size by identifying a criterion of significance for
each component(i.e., parameter, filter, layer), such as the mag-
nitude of the weight [11]. Recently, pruning-at-initialization
methods [4, 5] have attracted a lot of interest as they can
reduce the training cost while achieve similar accuracy.
Neural Architecture Search (NAS) has become a popu-

lar approach for automatically discovering competitive neu-
ral network architectures, surpassing those designed by hu-
mans [2]. Existing methods [1, 12] primarily focus on accu-
racy while neglecting other hardware-related factors, such
as latency, energy, and memory. However, the optimality of
DNNmodels depends on both the model architecture and tar-
get devices. To address this, we propose a hardware-aware
NAS method, aiming to find the Pareto-optimal architec-
tures within the search space. There are several challenges.
Firstly, different platforms require different operations, and
efficiency metrics are not simple functions of MACs (multi-
ply–accumulate operations). Therefore, it is necessary to cus-
tomize the search space and strategy for a specific hardware
platform. Secondly, customizing search options for hardware
will inevitably increase the complexity of the search space,
rendering the search cost more difficult to bear.
Inspired by the above observations, we propose a NAS

method to find a resource-efficient network on the target
hardware. As illustrated in figure 1, our hardware-aware
efficient NAS (HaeNAS) consists of three steps. First, we
design a flexible search space that takes into account the
hardware features. Second, we employ zero-cost proxies to
implement hardware-aware evolution search. Finally, post
processing, such as compound scaling and adding SE block,
are utilized. Our contributions are as follows:

• We propose a lightweight NAS methodology which
can quickly explore a wide search space, considering
resource constraints including latency and energy.
• We designed a flexible search space that allows for

selection among different depths, widths, convolution
kernels, and operation types in each stage.
• We evaluate models with direct hardware metrics such

as latency and energy consumption, instead of proxy
metrics such as model size and FLOPs.
• We improve the pruning-at-initializationmethodswhich
only use a minibatch of data, leading to a significant
reduction in the search cost.

2 Methodology
In this section, we present the technical details of HaeNAS,
which searches efficient CNN models for specific hardware
platforms in a data-driven way.

2.1 Problem formulation
Our goal is to find CNN models with both high accuracy and
low resource consumption. Resource consumption, such as
latency and energy, during model inference is critical, as they
can directly affect the user experience and the number of
model executions. Previous NAS approaches often optimize
for indirect metrics, such as FLOPS, MACs, and model sizes.
We consider inference latency and energy consumption by
running and tracking CNN models on the target devices
and incorporating these hardware metrics into our objective
function. The NAS problem is formulated as

maxmize
𝑎∈A

Score(𝑎) ×
[
𝐿𝐴𝑇 (𝑎)

𝐿

]𝜆
×
[
𝐸𝐶 (𝑎)

𝐸

]𝜔
(1)

where Score(a) measures the accuracy of architecture a, 𝜆
and 𝜔 respectively represent the importance of latency and
energy consumption. 𝜆 could be defined as equation 2. And
𝜔 is defined in a similar way.

𝜔 =

{
𝛼, 𝑖 𝑓 𝐿𝐴𝑇 (𝑎) ≤ 𝐿

𝛽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

Given an architecture search space A, HaeNAS aims to
find an optimal architecture 𝑎 ∈ A that after training it
can achieve the optimal accuracy and resource consumption
trade-off. Therefore, in our work, we focus on three factors
of the problem: (1) the architecture search space A, (2) the
objective function that considers latency and energy con-
sumption, and (3) a lightweight search algorithm that scores
architectures before training.

2.2 Search space design
The effectiveness of NAS algorithms is directly dependent on
search space design. Ideally, it should encompass numerous
excellent candidate architectureswhile avoiding unnecessary
complexity. Predefined macro architecture and layer-level
search strategy have been shown to reduce search cost with-
out compromising model performance [9]. NASNet [15], for
instance, improved search efficiency by 7 times and achieved

Table 1. The macro architecture of the search space, where
TBS means to be searched.

Input resolution
𝐻𝑖 ×𝑊𝑖

Operator
𝑂𝑖

Kernel
𝐾𝑖 × 𝐾𝑖

Expansion
𝑒𝑖

Layer
𝐿𝑖

224 × 224 × 3 𝐶𝑜𝑛𝑣3 × 3 - - 1
112 × 112 × 16 TBS {3, 5, 7} {3, 4, 6} 1
112 × 112 × 16 TBS {3, 5, 7} {3, 4, 6} {2, 3, 4}
56 × 56 × 24 TBS {3, 5, 7} {3, 4, 6} {2, 3, 4}
28 × 28 × 40 TBS {3, 5, 7} {3, 4, 6} {2, 3, 4}
14 × 14 × 80 TBS {3, 5, 7} {3, 4, 6} {2, 3, 4}
14 × 14 × 112 TBS {3, 5, 7} {3, 4, 6} {2, 3, 4}
7 × 7 × 160 TBS {3, 5, 7} {3, 4, 6} 1
7 × 7 × 960 𝐶𝑜𝑛𝑣1 × 1&𝑃𝑜𝑜𝑙𝑖𝑛𝑔&𝐹𝐶 - - -

higher accuracy compared with the previous work [14] by
employing suitable macro architecture design.
HaeNAS adopts a macro architecture based on the Mo-

bileNets [12] and searches in the level of stage. As shown in
Table 1, HaeNAS’s search space is divided to 9 stages, where
the first and last stages are fixed. The first stage contains a
regular convolution layer with a 3x3 kernel and stride of 2.
The last stage contains an average pooling layer and two
convolution layers, which is proposed by MobileNetv3 [12]
to save cost without sacrificing accuracy. The middle 7 stages
are searchable, while the input resolution and stride of each
stage is fixed. HaeNAS searches the setting of stages, in-
cluding operation type, kernel size, stage width, and stage
depth.

The inverted bottleneck (IBN) block with DWConv, which
is proposed by MobileNets [12], is widely. It has fewer pa-
rameters and MACs, making it more suitable for mobile
devices. However, the theoretical computational complexity
(e.g. MACs or FLOPs) does not often necessarily correspond
to inference speed. The inference latency may be propor-
tional to the MACs of the model on one platform, while
being proportional to the memory access on another plat-
form. Therefore, when designing a model, it is crucial to
select a model that aligns with the platform’s features.

Many current NASmethod, such as Once-for-all andMnas-
Net, only consider IBN blockwhen designing search spaces [1].
This severely limits the flexibility of the resulting models and
fails to provide models that are better suited to hardware plat-
form. To address this, we propose searching for convolution
operation type in addition to kernel size, stage depth, and
width. As shown in Fig 2, besides IBN block, the search space
of HaeNAS also includes fused inverted bottleneck layers
(Fused-IBN). The Fused-IBN block replaces the combination
of DWConv and pointwise Conv layers in IBN block with a
regular Conv. Although this increases the computation cost,
it reduces the I/O overhead of intermediate results.

2.3 Hardware aware evolution search
HaeNAS improves the aging evolution (AE) algorithm pro-
posed by AmoebaNet [7], and incorporates hardware aware-
ness in fitness evaluation. The procedure of Hardware-Aware
Aging Evolution (HAE) algorithm is shown in Algorithm 1.

2

Conv
 1x1

SE

DWConv kxk

Conv 1x1

H, W, C

H, W, eC

H, W, eC

H, W, C

IBN

Conv
 1x1

SE

Conv kxk

H, W, C

H, W, eC

H, W, eC

H, W, C

Fused IBN

Figure 2. The structure of IBN block and fused-IBN block.
We use queue to save population participating in evolution
and use set to save all excellent individuals in the history.
HAE algorithm adds young individuals from the right and
removes old individuals from the left of the queue based on
the FIFO principle. The ℎ𝑖𝑠𝑡𝑜𝑟𝑦 set only stores the model
architecture without saving weights, thereby avoiding oc-
cupying too much memory. HAE inherits the "age" concept
proposed by AE [7] to ensure a regular elimination and up-
date of the population. Individuals with the longest existence
time, rather than those with the worst performance, will be
eliminated. This approach avoids the situation where elite in-
dividuals produce a large number of offspring, which would
compromise the diversity of the population. Furthermore,
the HAE algorithm prevents being trapped in local optima
by assigning a probability for poor individuals to generate

Algorithm 1: Hardware-aware aging evolution
Output: candidate with the highest fitness

1 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← empty queue; ⊲ current population
2 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← ∅ ; ⊲ save all the excellent models
3 while | 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 |< 𝑃 do
4 model.arch← RandArch() ;
5 model.fit← HaeFitness(model.arch) ;
6 add model to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 queue ;
7 add model to ℎ𝑖𝑠𝑡𝑜𝑟𝑦 set ;
8 end
9 while | ℎ𝑖𝑠𝑡𝑜𝑟𝑦 |< 𝐶 do
10 𝑠𝑎𝑚𝑝𝑙𝑒 ← ∅ ; ⊲ candidate parents
11 while | 𝑠𝑎𝑚𝑝𝑙𝑒 |< 𝑆 do
12 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← random member from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
13 add 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to 𝑠𝑎𝑚𝑝𝑙𝑒;
14 end
15 parent← highest-fitness member in 𝑠𝑎𝑚𝑝𝑙𝑒 ;
16 children.arch← HaeMutation(parent.arch);
17 children.fit← HaeFitness(children.arch);
18 add highest-fitness child to ℎ𝑖𝑠𝑡𝑜𝑟𝑦;
19 add highest-fitness child to 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
20 remove the oldest from 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;
21 end

offspring through random selecting candidate parents. The
HAE algorithm also maintains a faster convergence rate by
preserving a subset of superior individuals in the population.
Some work [1, 13] achieves hardware awareness by in-

cluding latency as part of the loss function, while HaeNAS
achieves it more directly by incorporating hardware met-
rics into the fitness function of the evolution algorithm. As
shown in equation 1, we adopt a custom weighted product
approach to evaluate fitness by aligning accuracy, latency,
and energy consumption metrics.
To evaluate the fitness of candidate individuals, it is nec-

essary to obtain their accuracy scores. In AmoebaNet [7],
candidate models are trained for 50 epochs under the same
setting to obtain their accuracy on CIFAR-10. However, it is
very expensive to train amodel on ImageNet, which is the tar-
get dataset of our HaeNAS. To reduce the training cost, some
NAS algorithms, such as ProxylessNAS [1], adopt methods
like training supernet and inheriting supernet weights for
subnet. However, these method still require significant com-
putation cost. Inspired by pruning-at-initializationmethods[4],
HaeNAS proposes to rank candidate networks using zero-
cost metrics instead of accuracy. While accuracy is obtained
after tens of epoches of training, the score of the zero-cost
metric is obtained by a single forward/backward propagation,
thus saving the search cost.

We improve the following pruning-at-initialization meth-
ods, extending them to scoring the entire candidate network.
These metrics were previously used at the granularity of a
single neuron (e.g. a parameter or a channel), now we adapt
them by sum up every neuron’s score to get the score of
entire model. Here, L represents the loss function of a can-
didate model with weight parameters 𝜃 . ⊙ represents the
Hadamard product, which refers to the element-wise mul-
tiplication of two matrices with the same dimensions. The
𝑔𝑟𝑎𝑑_𝑛𝑜𝑟𝑚 means we sum the Euclidean norm (L2) of the
gradients after a single minibatch. The 𝑠𝑛𝑖𝑝 [4] is proposed
by Lee et al, which measures the change in loss function
when a specific operation or parameter is removed. The
𝑔𝑟𝑎𝑠𝑝 [10] is similar to 𝑠𝑛𝑖𝑝 , while it measures the change in
gradient norm instead of loss function. The 𝑗𝑎𝑐𝑜𝑏_𝑐𝑜𝑛𝑣 [5]
is proposed by Mellor et al, which captures the correlations
between activations in the network when presented with dif-
ferent inputs. A lower correlation is indicative of better per-
formance in distinguishing between different input classes.

S𝑔𝑟𝑎𝑑_𝑛𝑜𝑟𝑚 =

√︄∑︁ (
𝜕L
𝜕𝜃

)2
(3)

S𝑠𝑛𝑖𝑝 (𝜃) =
���� 𝜕L𝜕𝜃 ⊙ 𝜃 ���� (4)

S𝑔𝑟𝑎𝑠𝑝 (𝜃) = −
(
𝐻

𝜕L
𝜕𝜃

)
⊙ 𝜃 (5)

𝑆 𝑗𝑎𝑐𝑜𝑏_𝑐𝑜𝑛𝑣 = −
𝑁∑︁
𝑖=1

[
log

(
𝜎𝐽 ,𝑖 + 𝑘

)
+
(
𝜎𝐽 ,𝑖 + 𝑘

)−1] (6)

3

Another issue is the value of 𝜆, 𝜔 , L (i.e. target inference la-
tency), E (i.e. target energy consumption) in the fitness func-
tion. Figure 3 presents the fitness curve under two different
sets of (𝛼, 𝛽) values. For illustration purposes, the inference
latency T is set to 80ms and energy consumption is not con-
sidered. The upper curve applies a soft constraint on the tar-
get inference latency with (𝛼 = −0.05, 𝛽 = −0.05), while the
lower curve imposes a hard constraint with (𝛼 = −0, 𝛽 = −0.7).
A hard constraint can prevent the model from violating the
inference latency constraint by rapidly decreasing the fitness
value, but the fitness score would depend solely on the accu-
racywhen the latency constraint is not exceeded. A smoother
adjustment of the fitness function value is more beneficial
for balancing accuracy and hardware metrics. Therefore, the
HaeNAS algorithm adopts a soft-constrained fitness func-
tion.
An empirical rule for choosing 𝜆 and 𝜔 is to ensure that

the Pareto-optimal solutions have similar fitness value. In the
EfficientNets [6], doubling the latency typically comes with
a 3% relative accuracy improvement. Specifically, given two
models𝑚1 and𝑚2 with the same energy cost, and consider-
ing only inference latency and accuracy, if model𝑚1 has an
inference latency of 𝑙 and an accuracy score of 𝑠 , while model
𝑚2 has an inference latency of 2𝑙 and an accuracy score of
(1+3%)𝑠 , the fitness value for them should be roughly equal.
Thus, the value of 𝛼 is approximately -0.05. The situation is
similar for energy cost. Therefore, in the subsequent exper-
iments, unless otherwise specified, the HaeNAS algorithm
sets the scaling factors for latency and energy to -0.05.

Figure 3. Objective function defined by equation 1

2.4 Post processing
Modern series models such as MobileNets [12] and Efficient-
Nets [9] typically include multiple models that vary in size
and accuracy to meet different resource requirements. Hae-
NAS intentionally imposes stricter constraints on the target
inference latency T and target energy consumption E in
the fitness function. We employ compound scaling [9] to
simultaneously increase the model’s depth, width, and input
resolution. Compound scaling achieves higher precision re-
turn than scaling a single factor alone by allocating scaling
coefficients for each factor in a balanced way. We perform
a grid search to find scaling factors for depth, width, and

input resolution under different multiples of computational
cost. Additionally, the proposed method employs manual
adjustments. Firstly, it restricts the maximum input resolu-
tion to 380 to avoid excessive training and inference costs.
Secondly, more network layers are added in the later stages,
as aggressive expansion of depth is unnecessary in the early
stages.
To enhance the accuracy, HaeNAS further incorporates

a lightweight attention module: squeeze-and-excitation(SE)
block [3]. It applies attention to channels. Given an input
feature map, the SE block first performs global average pool-
ing for each channel. Then, the squeeze operation captures
channel correlations through two cascaded fully connected
layers. Finally, channel-wise multiplication is performed be-
tween the activation values and the input feature map. To
avoid introducing too much computation cost, we selectively
remove unimportant SE blocks. The standard deviation of
the activation values across different images on each channel
is calculated. If the standard deviation is small, it indicates
that the SE block does not help distinguish which channel is
more important, so the SE block can be removed.

3 Evaluation
3.1 Experimental setups
Datasets & Evaluation Metrics. We evaluate HaeNAS
on image classification task. We use ImageNet-1K dataset,
which consists of 1.2 million training images and 50,000
validation images, covering 1000 categories. In addition to
the classification accuracy, HaeNAS evaluates the inference
latency on Xeon CPU and GTX 3080 GPU, and the inference
energy consumption on GTX 3080 GPU and Raspberry Pi 4.
Hardware Platforms. We conduct experiments on

three different hardware platforms. The first one is a Xeon
E5-2650 CPU, which is a server CPU. As it is in a stable
power supply environment, we only focus on its inference
latency. The second one is a GTX 3080 GPU, which is a high-
performance GPU for both training and inference. We use
the nvidia-smi utility to measure its energy consumption.
The third one is a Raspberry Pi 4, which is a widely used
edge development board. We use an FNIRSI-FNB58 power
meter to track its voltage and current, enabling us to obtain
power consumption information.
Latency and Energy Prediction Models. HaeNAS

employs multi-layer perceptron (MLP) models to predict
inference latency and energy consumption. To train the pre-
diction models, 1000 random models are sampled from the
search space. To avoid the impact of the DNN model’s com-
putation startup and the randomness in the computation
process, we adopt the approach of warm-up and multiple
runs to obtain an average value. Meanwhile, different devices
have different computing parallelism, and appropriate loads
need to be set when measuring hardware metrics, which is
achieved by selecting an appropriate batch size.

4

0

0.2

0.4

0.6

0.8

1

CIFAR-10 CIFAR-100 ImageNet16-120

Pe
rfo

rm
an

ce
 o

f
ze

ro
 p

ro
xi

es

grad_norm snip grasp jacob_cov vote

Figure 4. Performance of zero-cost proxies.

3.2 Main results
Train-free proxy for lightweight NAS. The effective-
ness of adopting zero-cost metrics as the evaluation strategy
of HaeNAS needs to be confirmed.We use NAS-Bench-201 as
the benchmark model set and evaluate the effectiveness with
Spearman’s rank correlation coefficient. The Spearman’s
rank correlation coefficient measures the order relationship
between variables, rather than the numerical relationship.
The NAS-Bench-201 provides accuracy information for

three datasets: CIFAR-10, CIFAR-100, and ImageNet-16-120.
Figure 4 presents the performance results of zero-cost prox-
ies. In terms of a single criterion, jacob_conv achieves the
highest score. It captures the model’s ability to differenti-
ate between different inputs, i.e., classification, based on
activation values, and thus has considerable potential. Fol-
lowing closely behind are grad_norm and snip, both of which
involve gradient values, with Spearman’s correlation coeffi-
cients around 0.6. The calculation of loss and the update of
parameters based on the loss are called gradient propagation.
Thus, the gradient value to some extent reflects the model’s
learning direction and learning ability.
Due to the fact that the selected evaluation metrics have

different focuses, HaeNAS utilizes a majority voting scheme
to decide which individuals to keep during each evolution
round. Specifically, jacob_conv, grad_norm, and snip are
jointly considered to determine the candidates to be pre-
served. Moreover, for recording fitness scores and selecting
potential parents, the value of jacob_conv is used.

Results under different computational resource con-
straints. The searching results of HaeNAS for base mod-
els on different platforms are shown in Figures 5. The letters
denote the corresponding platform, with "G" representing
GPU, "C" representing CPU, and "E" representing edge device
Raspberry Pi 4. Different colors indicate different convolu-
tion kernel sizes, and F-IBN and IBN are used to distinguish
operation types. The number inside the rectangle represents
the expansion ratio, and the number outside the rectangle
represents the stage depth.

Different hardware platforms result in architectures with
distinct characteristics when searched by HaeNAS. For in-
stance, HaeNAS-G tends to choose less layers and F-IBN
block, with a preference for large kernel and big expansion
ratio in the early stages. HaeNAS-C tends to choose more
layers and smaller expansion ratio. Meanwhile, HaeNAS-E
tends to select IBN block, which result in less computation
cost. Overall, all three models prefer larger kernel sizes and
retain SE block in the later stages.

11
2x

11
2x

16

56
x5

6x
24

28
x2

8x
40

14
x1

4x
80

14
x1

4x
11

2

7x
7x

16
0

F-
IB

N
3

5x
5

F-
IB

N
4

7x
7

F-
IB

N
4

7x
7

C
on

v
3x

3

IB
N

6
3x

3

IB
N

6
7x

7

IB
N

6
5x

5

Po
ol

in
g7x

7x
96

0X2 X2 X2 X2 X3 X1

11
2x

11
2x

16

56
x5

6x
24

28
x2

8x
40

14
x1

4x
80

14
x1

4x
11

2

7x
7x

16
0

F-
IB

N
3

3x
3

F-
IB

N
3

3x
3

IB
N

4
3x

3

C
on

v
3x

3

IB
N

4
5x

5

IB
N

4
5x

5

IB
N

6
3x

3

Po
ol

in
g7x

7x
96

0X4 X3 X3 X3 X2 X1

11
2x

11
2x

16

56
x5

6x
24

28
x2

8x
40

14
x1

4x
80

14
x1

4x
11

2

7x
7x

16
0

IB
N

3
5x

5

IB
N

3
7x

7

IB
N

4
7x

7

C
on

v
3x

3

IB
N

3
5x

5

IB
N

3
7x

7

IB
N

3
7x

7

Po
ol

in
g7x

7x
96

0X2 X3 X4 X3 X3 X1

HaeNAS-G

HaeNAS-C

HaeNAS-E

Figure 5. Visualization of the searched architectures.

Table 2. The comparison of HaeNAS and other models
Model Name Top-1 Top-5 AutoML Latency

Aware
Energy
Aware

Search cost
(GPU hour)

ResNet-50 76.1% 92.09 Handcraft N N -
MobileNetv2 72.0% 91.0% Handcraft N N -
MobileNetv3-L 75.2% 92.4% Handcraft N N -

NasNet-A 74.7% 91.97% RL N N 48,000
MnasNet 75.6% 92.6% RL Y N 40,000

ProxylessNAS 75.1% 92.5% Gradient Y N 200
HaeNAS-G 78.3% 93.3% Evolution Y Y ≈160
HaeNAS-C 78.1% 93.2% Evolution Y Y ≈160
HaeNAS-E 77.6% 93.0% Evolution Y Y ≈160

Accuracy and search cost. Table 2 presents the ac-
curacy result of HaeNAS and other mainstream models,
both handcraft or automaticallly designed. Compared to Mo-
bileNetv2, HaeNAS models have improved accuracy on the
ImageNet dataset by 4.6% to 6.3% while maintaining similar
inference time.
Compared to other autoML methods, the HaeNAS based

on zero-cost metrics has a significant advantage in search
cost. Compared to reinforcement learning methods, the re-
quired search cost of HaeNAS is reduced by nearly 300 times.
Even compared to the ProxylessNAS based on gradient and
super network parameter sharing, HaeNAS achieves 1.25
times computation cost savings. These benefits are mainly
due to the use of zero-cost proxy metrics that reduce unnec-
essary additional training.

Hardware metrics. HaeNAS applies compound scaling
to the base models obtained by the hardware-aware evo-
lutionary algorithm. Figures 6 shows the accuracy-latency
comparisons of the HaeNAS-C and HaeNAS-G models after
scaling, with M/L denoting the scaled models. HaeNAS-C-L
can achieve 80.1% Top-1 accuracy at a speed of 137ms on the
CPU, and the latency is 86% of that of EfficientNet at the same
accuracy. On 3080 GPU, the inference latency of HaeNAS-G
models are only 44% to 49% of that of EfficientNets at the
same accuracy. We believe this is due to the inclusion of
F-IBN block in the search space, which is more conducive to
the parallel performance of GPU-like hardware.

5

76

77

78

79

80

81

40 60 80 100 120 140 160 180

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et

Inference Latency on Xeon CPU (batch=8) (ms)

EfficientNet

HaeNAS-C

76

77

78

79

80

81

5 8 11 14 17 20 23 26

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et

Inference Latency on 3080 GPU (batch=16) (ms)

HaeNAS-G

EfficientNet

Figure 6. The latency comparison of HaeNAS models and
EfficientNets on CPU and GPU.

75

76

77

78

79

80

1000 1400 1800 2200 2600 3000

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et

Inference Energy Consumption on Raspberry Pi 4B (batch=4) (mJ)

HaeNAS-E

ResNet-50

75

76

77

78

79

80

81

500 680 860 1040 1220 1400

To
p-

1
Ac

cu
ra

cy
 o

n
Im

ag
eN

et

Inference Energy Consumption on 3080 GPU (batch=16) (mJ)

HaeNAS-G

ResNet-50

Figure 7. The energy consumption comparison of HaeNAS
models and ResNet-50 on Raspberry Pi 4 and GPU.

Figure 7 presents a comparison of the energy efficiency
between HaeNAS and ResNet-50 on edge devices and GPU,
where the vertical axis represents the Top-1 accuracy and the
horizontal axis represents the average inference energy con-
sumption measured in millijoules (mJ). On Raspberry Pi 4,
the inference latency of HaeNAS-E is only 67% of ResNet-50,
and the inference energy consumption is only 45% of ResNet-
50. This is due to the use of IBN block in HaeNAS-E, which
effectively reduces computation cost. On 3080 GPU, HaeNAS
achieved an average inference power reduction of 80% to 89%
compared to ResNet-50, but an energy consumption reduc-
tion of 49% to 80%. The energy optimization mainly comes
from the improvement in inference latency. The GPU fre-
quency adjustment strategy is more conservative, resulting
in a strong positive correlation between energy consumption
and latency. On the CPU platform, the frequency adjustment
is more aggressive, which weakens the correlation between
energy consumption and latency, leading to a trade-off be-
tween latency and energy consumption for better latency
performance.

4 Conclusion
We present HaeNAS, a hardware-aware efficient neural ar-
chitecture search framework. It includes three steps. First, it
designs the search space based on hardware characteristics
and predefine the macro architecture of models. Second, in
order to save search cost, HaeNAS proposes to use zero cost
proxies and hardware-aware evolution algorithm to search
candidates for target devices. The actual target device latency
and energy consumption of sampled networks are used to
train prediction models. Third, compound scaling and selec-
tive SE block are adopted to find models that strike a balance
between accuracy and hardware metrics. The accuracy of
the models found by HaeNAS on ImageNet can be compara-
ble to mainstream models, both handcraft and automatically
designed. The latency and energy consumption comparison
on all target hardware platforms (Xeon CPU, 3080 GPU, and

Raspberry Pi 4) confirms the effectiveness of the proposed
HaeNAS methodology.

Acknowledgments
This work was supported by the Open Project Program of the
State Key Laboratory of the Mathematical Engineering and
Advanced Computing (2020A10), the National NSF of China
(NO. 62141218), and Shanghai Key Laboratory of Scalable
Computing and Systems.

References
[1] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332 (2018).

[2] Krishna Teja Chitty-Venkata and Arun K Somani. 2022. Neural archi-
tecture search survey: A hardware perspective. Comput. Surveys 55, 4
(2022), 1–36.

[3] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 7132–7141.

[4] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018.
Snip: Single-shot network pruning based on connection sensitivity.
arXiv preprint arXiv:1810.02340 (2018).

[5] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. 2021. Neu-
ral architecture search without training. In International Conference
on Machine Learning. PMLR, 7588–7598.

[6] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018.
Efficient neural architecture search via parameters sharing. In Inter-
national conference on machine learning. PMLR, 4095–4104.

[7] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019.
Regularized evolution for image classifier architecture search. In Pro-
ceedings of the aaai conference on artificial intelligence, Vol. 33. 4780–
4789.

[8] Sergei Shcherban, Peng Liang, Zengyang Li, and Chen Yang. 2021.
Multiclass classification of four types of UML diagrams from images
using deep learning. In Proc. of the 33rd International Conference on
Software Engineering & Knowledge Engineering (SEKE). KSI. 57–62.

[9] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International conference
on machine learning. PMLR, 6105–6114.

[10] Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020. Picking
winning tickets before training by preserving gradient flow. arXiv
preprint arXiv:2002.07376 (2020).

[11] Xiao-Jie Wang, WenBin Yao, and Huiyuan Fu. 2019. A Convolutional
Neural Network Pruning Method Based On Attention Mechanism.. In
SEKE. 343–452.

[12] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin, Gabriel
Bender, Yongzhe Wang, Pieter-Jan Kindermans, Mingxing Tan, Vikas
Singh, and Bo Chen. 2021. Mobiledets: Searching for object detection
architectures for mobile accelerators. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3825–3834.

[13] Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng,
Yuhong Li, Kyle Rupnow, Jinjun Xiong, Thomas Huang, Honghui Shi,
et al. 2020. SkyNet: a hardware-efficient method for object detection
and tracking on embedded systems. Proceedings of Machine Learning
and Systems 2 (2020), 216–229.

[14] Barret Zoph and Quoc V Le. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578 (2016).

[15] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018.
Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 8697–8710.

6

	Abstract
	1 Introduction
	2 Methodology
	2.1 Problem formulation
	2.2 Search space design
	2.3 Hardware aware evolution search
	2.4 Post processing

	3 Evaluation
	3.1 Experimental setups
	3.2 Main results

	4 Conclusion
	Acknowledgments
	References

