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Abstract—Self-adaptive systems can adapt to environmental 

changes by modifying their behavior and require runtime 

verification after adaptation. More efficient verification 

mechanisms are required because verification mechanisms such as 

model checking are computationally and memory intensive. A 

possible method is to generate expressions for model checking at 

design time and execute such expressions at runtime. Our previous 

work proposed a caching mechanism and parameterization to 

improve the expression generation method. In this study, we 

improve our previous work by generating expressions using 

Laplace expansion. This method expands the probabilistic model 

at the points where it is different from the design model and brings 

the model closer to a model in a cache for generating expressions. 

We also propose a method to generate candidate metrices to 

increase the number of cached matrices and improve the cache hit 

ratio. We conducted experiments with three types of changes, that 

is, adding, changing, and deleting states. We observed that our 

approach is effective when the model’s states are added or changed. 

Keywords- requirements, self-adaptive system, runtime 

verification. 

I.  INTRODUCTION 

Software systems are increasingly being used by more 
people and should be highly reliable regardless of changing 
operating environments. Self-adaptive systems [1,2,3,4] are 
systems that can operate stably in changeable environments. A 
self-adaptive system can restructure itself in response to changes 
in the external environment, making it easy to change and 
manage the system. However, a self-adaptive system requires 
verification at runtime to ensure that the modified system meets 
system requirements. We focus on the reachability property, 
which states that a target state can be eventually reached from an 
initial state. The state space is represented as a discrete-time 
Markov chain (DTMC) [5] model. This is because many 
properties useful in software development can be reduced to 
reachability. Filieri et al. [6,7] proposed a method that places the 
state transitions that are expected to be changed as variables in 
advance. This method generates a set of verification expressions 
that include the variable at design time and assigns obtained 
parameters at runtime to perform verification. This allows for 
faster verification. However, Filieri’s method generates a 
verification expression for system behavior at design time; 
therefore, it is not possible to perform verification quickly when 
the behavior changes significantly after adaptation. To address 
this problem, our previous work [8,9] proposed a method that 
uses a caching mechanism: Intermediate formulas obtained 

during the generation of verification formulas are stored in a 
cache. When the system state changes significantly and 
recalculation is necessary, the results of the intermediate 
formulas are reused from the cache, thereby reducing the 
computation time during system execution. Furthermore, by 
generating predicted models after adaptation and storing them in 
the cache as well, the cache hit ratio is improved, further 
decreasing computation time.  

In this study, we attempt to further speed up runtime 
verification time by improving the caching method in our 
previous study. Previously, the cache size increased along with 
the size of the predicted model, resulting in slower execution 
times. In this study, we use model modification information and 
perform Laplace expansion from the point where the model state 
changes when re-generation is necessary. We also generate 
candidate matrices to improve the cache hit ratio and reduce the 
calculations done in generating expressions.  

The experiment results shows that this approach is faster than 
other methods in specified situation, such as adding states and 
changing states. 

II. RELATED WORK 

Previous studies have developed the approach of model 
checking for runtime verification. For example, [10] proposed a 
fast parametric model checking (fPMC) approach that generates 
an abstract model, which represents multiple states with a single 
state. Thus, even if the model size increases, this method can 
reduce the computational time. Furthermore, [11] proposed an 
incremental quantitative verification method for probabilistic 
models, which re-uses results from previous runtime verification 
to accelerate the process. The key in this approach is to use a 
decomposition of the model into its strongly connected 
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Fig 1. MAPE feedback loop mechanism. 

       

           

       



components (SCCs). This method also uses the structure of 
models and requires the analysis of the change impact on the 
model before the previous verification. Ref. [12] investigated 
three techniques, namely caching, lookahead and nearly-optimal 
reconfiguration. While this technique assumes that the 
verification is continuously executed, our technique assumes 
that the verification is divided into at runtime and at design time. 
A technique of caching is the basis of our approach. A technique 
of lookahead uses spare CPU to pre-verify stochastic models, 
which are expected to arise in the future. A technique of nearly-
optimal reconfiguration terminates runtime verification as soon 
as a system configuration satisfies some condition. This paper 
shows that these techniques can lead to significant reductions in 
runtime verification.  

III. BACKGROUND 

 In this section we explain self-adaptive systems and the 
DTMC method of model verification, which is widely used to 
model the reliability of software systems. In our study, we 
assume that the system states are represented as models, which 
enable easy and efficient verification of the reliability of systems 
in terms of non-functional properties, such as memory 
consumption and the computational cost. 

A. Self-adaptive systems and model verification 

The primary mechanism for self-adaptive systems is the 
monitor-analyze-plan-execute over a shared Knowledge 
(MAPE-K) feedback control loop [13], which repeats the four 
steps: monitoring, analyze, plan, and execute (Fig. 1). At runtime, 
a self-adaptive system monitors its external environment and 
analyzes information obtained from monitoring. If the system 
state violates the requirements, the system plans a new behavior 
that meets requirements and updates itself. This mechanism 
enables automatic adaptation to the environment. A self-
adaptive system requires efficient verification [14] to meet 
requirements and update itself over time.  

B. Discrete-time Markov Chcain Model  

A DTMC model is defined as state transition augmented with 
probabilities that meet the Markov process requirement that 
future states depend only on the current states without depending 
on previous states. The elements of a DTMC model are as 
follows: 

• S is a finite set of states 

• 𝑆0(⊆ 𝑆) is a set of initial states 

• P: S × 𝑆 → [0,1] is a transition matrix representing the 
transition probability between states 

A DTMC model has two types of states. The first is an 
absorbing state, which has transition probability of 1 to itself, 
while the second is a transient state which has a transition to 
other states. In this study, the state transition probability is 
represented as a real value [0, 1] and variables. 

Fig.2 shows a model of how a cleaning robot acts. This 
model analyzes the information obtained by the sensor and 
decides actions based on the information. The model transitions 
to either a failure or success state. The circles in Fig.2 denote 
states and each arrow represents a transition from a state to a 
next state. The number on each arrow stem denotes the 
probability of a state transition. The probability variable is a 
parameter obtained through execution or expected to change. 
The system starts at an initial state 0 and transitions to states 1-
3, based on information acquired by the sensors. External 
information is acquired via infrared sensor 1. If infrared sensor 
1 has a problem, it transitions to states 1, or 3. In state 4, the 
system analyzes the information obtained. In state 5, it plans 
response actions based on the analysis, and transitions to states 
6-8. States 6-8 indicate the robot motions; if a movement action 
is performed without any problems, a transition is made to state 
9, which denotes success. Conversely, if the corrective action 
cannot be performed owing to obstacles, a transition is made to 
state 10, which denotes a failure state. 

A DTMC model can be represented by an adjacency matrix. 
Fig.3 shows a matrix representation of the example in Fig. 2. In 
such a matrix, row i, column j represents the probability of 
transition from state i to state j.  

 

Fig. 3. The transition matrix of Fig. 2.  

Fig. 2. An example of DTMC model verification: a cleaning robot. 

  

 

 

   

 

 

 

  

                   

     

       

       

       

     

        

     

        

         

       

         

       

    

      

   

   

   

 

 

    

   

   

 

 

   

   

 

Fig. 4. Sub-matrices Q, R, O and I of the DTMC model for the 

cleaning robot illustrated in Fig. 2. 



C. Runtime verification using DTMC model 

In this section, we explain how to calculate state transition 
probabilities for model checking from a DTMC model and 
system requirements. A DTMC model with absorbing states can 
be represented by the following four matrices. 

𝑃  =   (
𝑄 𝑅
𝑂 𝐼

)  

The matrix Q is a matrix of probabilities of transitioning 
from a transient to transient state; the matrix R is a matrix of 
probabilities of transitioning from a transient to an absorbing 
state, and the matrix I is a matrix of probabilities of transitioning 
from an absorbing to absorbing state. The matrix I is an identity 
matrix because the transition probability to itself is 1. The matrix 
O represents the transition probability from an absorbing to a 
transient state, which is always zero because an absorbing state 
has only transitions to itself. Hence, matrix O can be expressed 
as a zero matrix, as shown in Fig. 4. 

Reachability in DTMC model can be expressed by the 
probability operator 𝑃⋈𝑝(𝑙) , where 𝑙  is a path formula. ⋈ 

denotes the comparison operator, such as <, ≤, >,   and  ≥, and 
𝑝  is a threshold of the probability that is defined by the 
requirements. 𝑃⋈𝑝(𝑙)  represents whether the probability meets 

⋈ 𝑝 under the condition 𝑙. We verify whether the probability of 
reaching an absorbing state satisfies ⋈ 𝑝.The following section 
describes how to obtain the transition probabilities for verifying 
reachability. To verify reachability in a DTMC, we consider the 
transition probability from a transient to transient state. If Q 
denotes the transition probability from a transient state, the 
transition probability after the first two transitions can be 
expressed as  Q2, which is the product of the first and second 
transition probabilities. The probability in some steps can be 
calculated in same way as follows. 

N = I + 𝑄1 + 𝑄2 + 𝑄3 + ⋯ = ∑ 𝑄𝑘

∞

𝑘=0

 

Because matrix N is an infinite series of matrix Q, matrix N 
can be taken as the inverse matrix of matrix (𝐼 − 𝑄). Next, given 
that matrix N is the transition probability from a transient to 
transient state, the reachability can be obtained with the 
following equation. 

B =  N × 𝑅 

Reachability 𝑏𝑖𝑘  from an initial state 𝑆𝑖 to an absorbing state 
𝑆𝑗 can be calculated as follows. 

𝑛𝑖𝑗 =
1

𝑑𝑒𝑡(𝑊)
⋅ α𝑗𝑖(𝑊) 

𝑏𝑖𝑘 = ∑ 𝑛𝑖𝑥

𝑥∈0..𝑡−1

⋅ 𝑟𝑥𝑖 =
1

𝑑𝑒𝑡(𝑊)
α𝑥𝑖(𝑊) ⋅ 𝑟𝑥𝑗  

The calculation of 𝑏𝑖𝑘  requires the calculation of 
determinants. The determinant is calculated by Laplace 
expansion and LU-decomposition.  

D. Generating runtime verification expressions 

The calculation of determinants is computationally intensive 
but must be performed at runtime. Therefore, Filieri et al. [5,6] 
proposed a method by performing some of the calculations 
required for model checking at design time. 

The method consists of two processes: precomputation at 
design time and verification at runtime. First, precomputation 
parameters that can only be obtained or may change at runtime 
are placed as variables, and verification expressions are 
generated. At runtime, the desired transition probabilities are 
calculated by substituting parameters into the verification 
equation to determine whether the requirements are met. This 
allows for fast model checking even if some of the transition 
probabilities have unknown parameters. The transition 
probabilities calculated by this method from initial state 0 to 
absorption state 10 in Fig. 3 are as follows: 

𝑏010(𝑥0,𝑥1,𝑥2,𝑥3) =
0.02(𝑥0 + 𝑥1)(𝑥2 + 𝑥3) + 0.024(𝑥0 + 𝑥1)

−𝑥0 − 𝑥1

 

At runtime, the reachability property can be obtained by 
substituting parameter values obtained from sensors and other 
sources into this expression. 

In this method, LU-decomposition is not possible when the 
matrix includes variables. Therefore, Laplace expansion is 
performed first; then the variables are removed from the matrix 
to enable LU-decomposition. This allows for shorter 
computation times than would have been with Laplace 
decomposition alone. We denote the size of Q matrix as 𝑡, the 
average transition number as τ, and the number of rows 
including variables as c. To calculate 𝑏𝑖𝑘 , the calculation of t 
determinants that is (𝑡 − 1) × (𝑡 − 1)  sizes of sub-matrices 
using Laplace expansion is given by 𝑂(𝑡3 ). In the case of 
calculation of determinants with variables, the row including 
variables is expanded and requires 𝜏𝑐  determinants. The 
expanded matrices are then calculated by LU-decomposition 
because the matrix has no variables. The calculation of a runtime 
verification formula is as follows: 

𝑂(τ𝑐・(𝑡 − 𝑐)3) ∼ 𝑂(τ𝑐・𝑡3) 

E. Caching mechanism and grouping of states 

In this section we describe the caching mechanism in the 
proposed runtime verification reduction method. Filieri’s 
method cannot use the generated expression when the system 
has changed significantly, such as if states have been added and 
deleted, and needs to re-generate the expression. The re-

 

Fig. 5. An example of grouping of states. 

       

  

 

 

   

 

 

 

  

                   

     

       

       

       

     

        

     

        

         

       

         

       

    

      

   

   

   

 

 

    

   

    

 

   

   

         



calculation of the generated verification formula at design time 
is time-consuming and affects system performance and 
execution. To address this problem, a caching mechanism is 
used. This caching mechanism stores pairs of matrices and the 
intermediate expressions obtained during the generation of 
verification formulas and reuses an expression if the matrices 
match. This is because the changes in self-adaptive systems are 
partial, and most of the models are similar. 

To reduce computational time, this approach generates 
candidate models and stores their matrix pairs as well. This can 
enable an early match of a matrix during calculation. Only 
matrices including the variable are stored in a cache, because a 
matrix without variables can be efficiently calculated by LU-
decomposition. When the size of model matched is large, a 
correspondingly large computational time improvement is 
gained from using a cache. The converse is the case when the 
matched model size is small.  

The caching mechanism has a drawback in that the size of 
the system model increases as the number of stored matrices in 
a cache becomes large. To solve this problem, in our previous 
study, similar states are grouped, and the transition of states is 
limited within the same group. The assumption is that processes 
can typically be grouped by functions. Hence, processes in the 
same group are completed in one function and adding of states 
is restricted to the same group. This can reduce the number of 
candidates.  

Fig.5 represents the grouping of states example in Fig.2. 
States 0-4 belong to sensing group and states 5-10 are in 
migration group.  

IV. EFFICINET LAPLACE EXPANSION  FOR CACHING 

The cache mechanism uses intermediate formulas to 
generate expressions efficiently. As model size increases, cache 
size also increases. An increasing cache size makes it difficult to 
perform by the robot, which has restriction of memory usage. 
Therefore, to improve hit ratio without increasing the cache size, 
we focus on Laplace expansion. In Laplace expansion, for a 
square matrix of order n, row I is chosen arbitrarily and 
coefficient 𝐴𝑖𝑗 is calculated for each component of the i th row, 

so that the resulting expansion formula matches the determinant 
of A. The equation is expressed as follows:  

det(A) = ∑(−1)𝑖+𝑗𝑎𝑖𝑗

n

j=1

  ⋅  det(Aij) 

Laplace expansion can be applied to column j in a similar 
process by calculating the coefficient Aij for each component in 

column j to obtain the determinant of 𝐴. 

To improve the cache hit ratio, we store changes in the model 
at design time. At execute time, we perform Laplace expansion 
on the changed points to remove them.  Compared to other 
methods, the matrix does not contain the changed points after 
adaptation; thus, it is more likely to match the matrices stored in 
the cache.  

Fig.6 shows an example of how Laplace expansion is 
performed, and the resulting generated intermediate expression 
and its matrix are stored in the cache. At runtime, if the matrix 
does not include any variables, the matrix is calculated by LU-
decomposition because LU-decomposition is faster than Laplace 
expansion. If the matrix includes any variables, the system 
acquires added rows as model change information and performs 
Laplace expansion on the rows added during the calculation of 
determinants. A search is performed on the obtained matrices, 
and if a matching matrix exists, the matrix is replaced with the 
expressions corresponding to the matrix.   

V. GENERATING CANDIDATE MATRICES 

To improve the cache hit ratio, we expand the matrix at 
design time in different rows, and intermediate expressions are 
stored in a cache. This increases the number of matrices stored 
in the cache and improves the cache hit ratio. Reducing the 
computational time at runtime depends on replacing the 
calculation of determinants with expressions stored at design 
time. This requires more matrices corresponds with partial 
changes. 

Fig.7 shows an example of generation of candidate matrices. 
The third row of the top matrix in the figure is expanded. The 
expanded matrix and the verification expression from the 
calculation are stored in a cache. Laplace expansion is done on 
the fourth row of the bottom matrix in the figure. The resulting 
matrix is different from the one obtained by Laplace expansion 
on the third row. The intermediate formulas for these matrices 

 

Fig. 7. An example of generation of candidate matrices.  

              

                                        

       

        
               
            

 

Fig. 6. An example of the proposed method, which uses on Laplace 

expansion. 

  

        
         

                  
                 

             

              

           
     

     

      

          

    



are stored in the cache as well to efficiently use the model at 
design time. This increases the number of matrices stored in the 
cache.  

VI. EXPERIMENTS 

The experiments compare the calculation time and cache size 
of the proposed method with those of other methods. In addition, 
the cache hit ratio is compared; that is the number of matches 
with the matrix stored in the cache at runtime divided by the 
number of cache searches. All the programs used in the 
experiments were implemented in Java. The experiments were 
conducted using the following methodology. 

• State size ranges from 10 to 25 states; the increment is 
by five states. 

• Transition from one state to another is randomly 
generated within the same group. 

• The number of trails is 10, and the average computation 
time over the 10 trials is used. 

• The computation time and cache size required to obtain 
the probability of transition to absorbing state are 
measured. 

Methods to be compared. 

• Baseline method 1: Filieri's method 

• Baseline method 2: Intermediate generative formulas 
using a cache + candidate model. 

• Proposed Method 1: Using Laplace expansion. 

• Proposed Method 2: Proposed method 1 + generating of 
candidate matrices. 

Baseline method 1 is the method by Filieri et al. Baseline 
method 2 uses a cache, generates candidate models at design 
time, and stores them in the cache. Proposed method 1 uses 
efficient Laplace expansion. Proposed method 2 performs 
Laplace expansion at different points at stores the matrices in the 
cache. We conducted experiments on three types of changes, 
namely adding states, changing states, and deleting states. The 
first experiment adds a design model to one state whose 
transition probability is restricted to the same group. Second 
experiment changes transition probabilities in one row. The last 
experiment randomly deletes one state in the design model. We 
conducted this experiment on a Mac equipped with a 7th 
generation Core m3(1.2GHz), 8.0 GB RAM, and Java program 
running on Eclipse.  

Tab. I shows the results when the number of states is changed 
by adding states. The execution times of the proposed methods 
1 and 2 show that they can generate runtime verification 
expressions in less time than other methods. Baseline method 1 
does not use a cache; hence, cache hit ratio is 0. Among the other 
methods, the proposed method 2 has a high cache ratio of 0.61 
for 25 states. The proposed method 2 has a smaller cache size 
than the proposed method 1. Tab. II shows the results when the 
number of states is changed, and states are partially changed. 
The execution time of the proposed method 2 is faster than other 
methods in generating a runtime verification expression, while 
the proposed method 1 is slower than other methods when the 
number of states is 25. Despite adding states as well, the cache 
size and cache hit ratio of baseline method 1 is 0. Tab. III shows 
the results when the number of states is changed by deleting 

 TAB. I RESULTS OF EXPERIMENTS ON ADDING STATES WHEN THE SIZE OF MODEL IS CHANGED  

 Execute Time [ms] Cache Hit Ratio  Cache Size [KB] 

 Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

10 13.349 8.824 6.468 4.424 0 0.07710 0.3029 0.48564 0 105.274 3.744 40.051 

15 192.841 133.019 57.737 11.470 0 0.01772 0.22672 0.59066 0 999.584 13.402 324.704 

20 677.729 662.884 255.478 20.201 0 0.00572 0.18992 0.61975 0 3091.104 21.990 1037.523 

25 2338.353 2278.914 795.951 50.123 0 0.00142 0.12013 0.61611 0 6527.738 32.525 2330.170 

TAB. II  RESULTS OF EXPERIMENTS  ON CHANGING STATES WHEN THE SIZE OF MODEL IS CHANGED  

 Execute Time [ms] Cache Hit Ratio  Cache Size [KB] 

 Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

10 13.752 11.17 19.282 6.419 0 0.11517 0.09475 0.10473 0 100.186 7.2 64.934 

15 389.014 270.952 355.673 157.602 0 0.13521 0.11095 0.08238 0 3007.06 65.741 1037.952 

20 3451.744 3472.968 5005.558 2631.507 0 0.01082 0.00766 0.05104 0 17082.573 208.378 6373.037 

25 15957.526 17634.146 21003.851 12243.737 0 0.00745 0.00488 0.04352 0 50554.291 433.862 20658.054 

TAB.  III RESULTS OF EXPERIMENTS ON DELETING STATES WHEN THE SIZE OF MODEL IS CHANGED  

 Execute Time [ms] Cache Hit Ratio  Cache Size [KB] 

 Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

Baseline 

Method 1 

Baseline 

Method 2 

Proposed 

Method 1 

Proposed 

Method 2 

10 1.792 2.412 1.371 1.986 0 0.18576 0.29313 0.46791 0 92.192 6.579 62.15 

15 26.777 19.018 35.371 11.694 0 0.05338 0.0578 0.27756 0 2005.037 42.912 813.434 

20 312.608 328.058 630.843 468.733 0 0.00923 0.00675 0.21231 0 13078.673 238.944 7049.606 

25 1333.708 1695.101 3427.358 3194.640 0 0.00122 0.0055 0.09127 0 35126.054 297.363 15790.061 

 



states. The execution time of method 1 is the fastest and 
proposed method 1 is the slowest in these experiments.  

VII. DISCUSSION 

A. Experiments on adding states 

In the experiments on adding states, proposed method 2 is 
faster than other methods in generating a runtime verification 
expression. Efficient Laplace expansion enhances the cache hit 
ratio and leads to reduction in computational time by replacing 
the calculation of determinants with expressions. In particular, 
the cache hit ratio of proposed method 2 is stable owing to large 
size of matrices in the early phase, whereas the cache hit ratio of 
the other methods decreases.  

B. Experiments on changing states 

Tab. II shows the execution time for "changing states" 
experiments. The execution time of the proposed method 2 is 
less than those of other methods; however, the proposed method 
1 takes the longest time to generate an expression. This is 
because the number of intermediate expressions stored with 
proposed method 1 is smaller than the number stored with 
proposed method 2. The cache of proposed method 1 does not 
include the matrices in cases of partial model changes. This leads 
to waste of cache search and increases computational time. 
Compared to adding states, as the states increase, the cache hit 
ratio of proposed method 2 is lower because of having to match 
a small number of matrices.  

C. Experiments on deleting states 

Tab. III shows the results for deletion of state. Our proposed 
method is not effective in deletion of states, method 1 is the 
fastest, and the proposed method 2 is the slowest of the methods. 
Because proposed methods 1 and 2 do not have enough matrices 
(which corresponds with deleting states), search misses increase 
execute time. The cache hit ratio of the proposed method 2 is 
higher than those of the other methods, because cache hit locally 
is much higher. We should consider improvement to increase the 
number of matrices in deleting states situations.  

These experiments demonstrate that our approach is 
effective in adding and changing states but is not effective in 
deleting states. Additionally, we found that the size of the 
matrices matched affects the execution time. In future work we 
will devise a method that matches as large a size of model as 
possible. We would decrease the cache size to increase the 
applicability of this method.  

VIII. CONCLUSION 

In this study we described a runtime verification mechanism 
for self-adaptive system. We propose the method using efficient 
Laplace expansion for caching. We also generate candidate 
matrices to increase storage of intermediate runtime verification 
expressions when significant changes occur, such as adding, 
deleting, and changing of states. These approaches improved the 
cache hit ratio by expanding the changed points of the matrix 
and reduced the computational time for generating runtime 
verification expressions. This led to fast runtime verification. 
The proposed method, which generates candidate matrices and 

expands the changed points, is effective when the states can be 
grouped and the model undergoes changes, such as adding or 
changing states. A possible application of the proposed 
mechanism is dynamic web applications. 

In future research, we aim to improve this method with 
experiments on deletion of states and partially changing states. 
Additionally, we will consider different adaptation patterns, 
such as adding more states and changing the number of variables 
to extend the applicability of the caching mechanism. 
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