@inproceedings{lai-etal-2020-extensively,
title = "Extensively Matching for Few-shot Learning Event Detection",
author = "Lai, Viet Dac and
Nguyen, Thien Huu and
Dernoncourt, Franck",
editor = "Bonial, Claire and
Caselli, Tommaso and
Chaturvedi, Snigdha and
Clark, Elizabeth and
Huang, Ruihong and
Iyyer, Mohit and
Jaimes, Alejandro and
Ji, Heng and
Martin, Lara J. and
Miller, Ben and
Mitamura, Teruko and
Peng, Nanyun and
Tetreault, Joel",
booktitle = "Proceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.nuse-1.5",
doi = "10.18653/v1/2020.nuse-1.5",
pages = "38--45",
abstract = "Current event detection models under supervised learning settings fail to transfer to new event types. Few-shot learning has not been explored in event detection even though it allows a model to perform well with high generalization on new event types. In this work, we formulate event detection as a few-shot learning problem to enable to extend event detection to new event types. We propose two novel loss factors that matching examples in the support set to provide more training signals to the model. Moreover, these training signals can be applied in many metric-based few-shot learning models. Our extensive experiments on the ACE-2005 dataset (under a few-shot learning setting) show that the proposed method can improve the performance of few-shot learning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lai-etal-2020-extensively">
<titleInfo>
<title>Extensively Matching for Few-shot Learning Event Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Viet</namePart>
<namePart type="given">Dac</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events</title>
</titleInfo>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Bonial</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Caselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alejandro</namePart>
<namePart type="family">Jaimes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lara</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teruko</namePart>
<namePart type="family">Mitamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nanyun</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current event detection models under supervised learning settings fail to transfer to new event types. Few-shot learning has not been explored in event detection even though it allows a model to perform well with high generalization on new event types. In this work, we formulate event detection as a few-shot learning problem to enable to extend event detection to new event types. We propose two novel loss factors that matching examples in the support set to provide more training signals to the model. Moreover, these training signals can be applied in many metric-based few-shot learning models. Our extensive experiments on the ACE-2005 dataset (under a few-shot learning setting) show that the proposed method can improve the performance of few-shot learning.</abstract>
<identifier type="citekey">lai-etal-2020-extensively</identifier>
<identifier type="doi">10.18653/v1/2020.nuse-1.5</identifier>
<location>
<url>https://aclanthology.org/2020.nuse-1.5</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>38</start>
<end>45</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extensively Matching for Few-shot Learning Event Detection
%A Lai, Viet Dac
%A Nguyen, Thien Huu
%A Dernoncourt, Franck
%Y Bonial, Claire
%Y Caselli, Tommaso
%Y Chaturvedi, Snigdha
%Y Clark, Elizabeth
%Y Huang, Ruihong
%Y Iyyer, Mohit
%Y Jaimes, Alejandro
%Y Ji, Heng
%Y Martin, Lara J.
%Y Miller, Ben
%Y Mitamura, Teruko
%Y Peng, Nanyun
%Y Tetreault, Joel
%S Proceedings of the First Joint Workshop on Narrative Understanding, Storylines, and Events
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F lai-etal-2020-extensively
%X Current event detection models under supervised learning settings fail to transfer to new event types. Few-shot learning has not been explored in event detection even though it allows a model to perform well with high generalization on new event types. In this work, we formulate event detection as a few-shot learning problem to enable to extend event detection to new event types. We propose two novel loss factors that matching examples in the support set to provide more training signals to the model. Moreover, these training signals can be applied in many metric-based few-shot learning models. Our extensive experiments on the ACE-2005 dataset (under a few-shot learning setting) show that the proposed method can improve the performance of few-shot learning.
%R 10.18653/v1/2020.nuse-1.5
%U https://aclanthology.org/2020.nuse-1.5
%U https://doi.org/10.18653/v1/2020.nuse-1.5
%P 38-45
Markdown (Informal)
[Extensively Matching for Few-shot Learning Event Detection](https://aclanthology.org/2020.nuse-1.5) (Lai et al., NUSE-WNU 2020)
ACL