@inproceedings{flynn-shardlow-2021-manchester,
title = "{M}anchester Metropolitan at {S}em{E}val-2021 Task 1: Convolutional Networks for Complex Word Identification",
author = "Flynn, Robert and
Shardlow, Matthew",
editor = "Palmer, Alexis and
Schneider, Nathan and
Schluter, Natalie and
Emerson, Guy and
Herbelot, Aurelie and
Zhu, Xiaodan",
booktitle = "Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.semeval-1.76",
doi = "10.18653/v1/2021.semeval-1.76",
pages = "603--608",
abstract = "We present two convolutional neural networks for predicting the complexity of words and phrases in context on a continuous scale. Both models utilize word and character embeddings alongside lexical features as inputs. Our system displays reasonable results with a Pearson correlation of 0.7754 on the task as a whole. We highlight the limitations of this method in properly assessing the context of the target text, and explore the effectiveness of both systems across a range of genres. Both models were submitted as part of LCP 2021, which focuses on the identification of complex words and phrases as a context dependent, regression based task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="flynn-shardlow-2021-manchester">
<titleInfo>
<title>Manchester Metropolitan at SemEval-2021 Task 1: Convolutional Networks for Complex Word Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Flynn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Shardlow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present two convolutional neural networks for predicting the complexity of words and phrases in context on a continuous scale. Both models utilize word and character embeddings alongside lexical features as inputs. Our system displays reasonable results with a Pearson correlation of 0.7754 on the task as a whole. We highlight the limitations of this method in properly assessing the context of the target text, and explore the effectiveness of both systems across a range of genres. Both models were submitted as part of LCP 2021, which focuses on the identification of complex words and phrases as a context dependent, regression based task.</abstract>
<identifier type="citekey">flynn-shardlow-2021-manchester</identifier>
<identifier type="doi">10.18653/v1/2021.semeval-1.76</identifier>
<location>
<url>https://aclanthology.org/2021.semeval-1.76</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>603</start>
<end>608</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Manchester Metropolitan at SemEval-2021 Task 1: Convolutional Networks for Complex Word Identification
%A Flynn, Robert
%A Shardlow, Matthew
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y Schluter, Natalie
%Y Emerson, Guy
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%S Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F flynn-shardlow-2021-manchester
%X We present two convolutional neural networks for predicting the complexity of words and phrases in context on a continuous scale. Both models utilize word and character embeddings alongside lexical features as inputs. Our system displays reasonable results with a Pearson correlation of 0.7754 on the task as a whole. We highlight the limitations of this method in properly assessing the context of the target text, and explore the effectiveness of both systems across a range of genres. Both models were submitted as part of LCP 2021, which focuses on the identification of complex words and phrases as a context dependent, regression based task.
%R 10.18653/v1/2021.semeval-1.76
%U https://aclanthology.org/2021.semeval-1.76
%U https://doi.org/10.18653/v1/2021.semeval-1.76
%P 603-608
Markdown (Informal)
[Manchester Metropolitan at SemEval-2021 Task 1: Convolutional Networks for Complex Word Identification](https://aclanthology.org/2021.semeval-1.76) (Flynn & Shardlow, SemEval 2021)
ACL