@inproceedings{rubin-berant-2021-smbop-semi,
title = "{S}m{B}o{P}: Semi-autoregressive Bottom-up Semantic Parsing",
author = "Rubin, Ohad and
Berant, Jonathan",
editor = "Kozareva, Zornitsa and
Ravi, Sujith and
Vlachos, Andreas and
Agrawal, Priyanka and
Martins, Andr{\'e}",
booktitle = "Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.spnlp-1.2/",
doi = "10.18653/v1/2021.spnlp-1.2",
pages = "12--21",
abstract = "The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SmBoP) that constructs at decoding step t the top-K sub-trees of height {\ensuremath{\leq}} t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SmBoP on Spider, a challenging zero-shot semantic parsing benchmark, and show that SmBoP leads to a 2.2x speed-up in decoding time and a {\textasciitilde}5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SmBoP obtains 71.1 denotation accuracy on Spider, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+Grappa."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rubin-berant-2021-smbop-semi">
<titleInfo>
<title>SmBoP: Semi-autoregressive Bottom-up Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ohad</namePart>
<namePart type="family">Rubin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Berant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujith</namePart>
<namePart type="family">Ravi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Priyanka</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SmBoP) that constructs at decoding step t the top-K sub-trees of height \ensuremathłeq t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SmBoP on Spider, a challenging zero-shot semantic parsing benchmark, and show that SmBoP leads to a 2.2x speed-up in decoding time and a ~5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SmBoP obtains 71.1 denotation accuracy on Spider, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+Grappa.</abstract>
<identifier type="citekey">rubin-berant-2021-smbop-semi</identifier>
<identifier type="doi">10.18653/v1/2021.spnlp-1.2</identifier>
<location>
<url>https://aclanthology.org/2021.spnlp-1.2/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>12</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SmBoP: Semi-autoregressive Bottom-up Semantic Parsing
%A Rubin, Ohad
%A Berant, Jonathan
%Y Kozareva, Zornitsa
%Y Ravi, Sujith
%Y Vlachos, Andreas
%Y Agrawal, Priyanka
%Y Martins, André
%S Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F rubin-berant-2021-smbop-semi
%X The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SmBoP) that constructs at decoding step t the top-K sub-trees of height \ensuremathłeq t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SmBoP on Spider, a challenging zero-shot semantic parsing benchmark, and show that SmBoP leads to a 2.2x speed-up in decoding time and a ~5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SmBoP obtains 71.1 denotation accuracy on Spider, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+Grappa.
%R 10.18653/v1/2021.spnlp-1.2
%U https://aclanthology.org/2021.spnlp-1.2/
%U https://doi.org/10.18653/v1/2021.spnlp-1.2
%P 12-21
Markdown (Informal)
[SmBoP: Semi-autoregressive Bottom-up Semantic Parsing](https://aclanthology.org/2021.spnlp-1.2/) (Rubin & Berant, spnlp 2021)
ACL