Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision

Zifeng Wang, Jimeng Sun


Abstract
Clinical trials are essential for drug development but are extremely expensive and time-consuming to conduct. It is beneficial to study similar historical trials when designing a clinical trial. However, lengthy trial documents and lack of labeled data make trial similarity search difficult. We propose a zero-shotclinical trial retrieval method, called Trial2Vec, which learns through self-supervision without the need for annotating similar clinical trials. Specifically, the meta-structure of trial documents (e.g., title, eligibility criteria, target disease) along with clinical knowledge (e.g., UMLS knowledge base) are leveraged to automatically generate contrastive samples. Besides, encodes trial documents considering meta-structure thus producing compact embeddings aggregating multi-aspect information from the whole document. We show that our method yields medically interpretable embeddings by visualization and it gets 15% average improvement over the best baselines on precision/recall for trial retrieval, which is evaluated on our labeled 1600 trial pairs. In addition, we prove the pretrained embeddings benefit the downstream trial outcome prediction task over 240k trials. Software is available at https://github.com/RyanWangZf/Trial2Vec.
Anthology ID:
2022.findings-emnlp.476
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2022
Month:
December
Year:
2022
Address:
Abu Dhabi, United Arab Emirates
Editors:
Yoav Goldberg, Zornitsa Kozareva, Yue Zhang
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
6377–6390
Language:
URL:
https://aclanthology.org/2022.findings-emnlp.476
DOI:
10.18653/v1/2022.findings-emnlp.476
Bibkey:
Cite (ACL):
Zifeng Wang and Jimeng Sun. 2022. Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6377–6390, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
Cite (Informal):
Trial2Vec: Zero-Shot Clinical Trial Document Similarity Search using Self-Supervision (Wang & Sun, Findings 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.findings-emnlp.476.pdf