@inproceedings{tripto-etal-2023-hansen,
title = "{HANSEN}: Human and {AI} Spoken Text Benchmark for Authorship Analysis",
author = "Tripto, Nafis and
Uchendu, Adaku and
Le, Thai and
Setzu, Mattia and
Giannotti, Fosca and
Lee, Dongwon",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.916",
doi = "10.18653/v1/2023.findings-emnlp.916",
pages = "13706--13724",
abstract = "$\textit{Authorship Analysis}$, also known as stylometry, has been an essential aspect of Natural Language Processing (NLP) for a long time. Likewise, the recent advancement of Large Language Models (LLMs) has made authorship analysis increasingly crucial for distinguishing between human-written and AI-generated texts. However, these authorship analysis tasks have primarily been focused on $\textit{written texts}$, not considering $\textit{spoken texts}$. Thus, we introduce the largest benchmark for spoken texts - ${\sf HANSEN}$($\underline{H}$uman $\underline{AN}$d ai $\underline{S}$poken t$\underline{E}$xt be$\underline{N}$chmark). ${\sf HANSEN}$ encompasses meticulous curation of existing speech datasets accompanied by transcripts, alongside the creation of novel AI-generated spoken text datasets. Together, it comprises 17 human datasets, and AI-generated spoken texts created using 3 prominent LLMs: ChatGPT, PaLM2, and Vicuna13B. To evaluate and demonstrate the utility of ${\sf HANSEN}$, we perform Authorship Attribution (AA) {\&} Author Verification (AV) on human-spoken datasets and conducted Human vs. AI text detection using state-of-the-art (SOTA) models. While SOTA methods, such as, character n-gram or Transformer-based model, exhibit similar AA {\&} AV performance in human-spoken datasets compared to written ones, there is much room for improvement in AI-generated spoken text detection. The ${\sf HANSEN}$ benchmark is available at: https://huggingface.co/datasets/HANSEN-REPO/HANSEN",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tripto-etal-2023-hansen">
<titleInfo>
<title>HANSEN: Human and AI Spoken Text Benchmark for Authorship Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nafis</namePart>
<namePart type="family">Tripto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adaku</namePart>
<namePart type="family">Uchendu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thai</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mattia</namePart>
<namePart type="family">Setzu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fosca</namePart>
<namePart type="family">Giannotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongwon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Authorship Analysis, also known as stylometry, has been an essential aspect of Natural Language Processing (NLP) for a long time. Likewise, the recent advancement of Large Language Models (LLMs) has made authorship analysis increasingly crucial for distinguishing between human-written and AI-generated texts. However, these authorship analysis tasks have primarily been focused on written texts, not considering spoken texts. Thus, we introduce the largest benchmark for spoken texts - \sf HANSEN(\underlineHuman \underlineANd ai \underlineSpoken t\underlineExt be\underlineNchmark). \sf HANSEN encompasses meticulous curation of existing speech datasets accompanied by transcripts, alongside the creation of novel AI-generated spoken text datasets. Together, it comprises 17 human datasets, and AI-generated spoken texts created using 3 prominent LLMs: ChatGPT, PaLM2, and Vicuna13B. To evaluate and demonstrate the utility of \sf HANSEN, we perform Authorship Attribution (AA) & Author Verification (AV) on human-spoken datasets and conducted Human vs. AI text detection using state-of-the-art (SOTA) models. While SOTA methods, such as, character n-gram or Transformer-based model, exhibit similar AA & AV performance in human-spoken datasets compared to written ones, there is much room for improvement in AI-generated spoken text detection. The \sf HANSEN benchmark is available at: https://huggingface.co/datasets/HANSEN-REPO/HANSEN</abstract>
<identifier type="citekey">tripto-etal-2023-hansen</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.916</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.916</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>13706</start>
<end>13724</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HANSEN: Human and AI Spoken Text Benchmark for Authorship Analysis
%A Tripto, Nafis
%A Uchendu, Adaku
%A Le, Thai
%A Setzu, Mattia
%A Giannotti, Fosca
%A Lee, Dongwon
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F tripto-etal-2023-hansen
%X Authorship Analysis, also known as stylometry, has been an essential aspect of Natural Language Processing (NLP) for a long time. Likewise, the recent advancement of Large Language Models (LLMs) has made authorship analysis increasingly crucial for distinguishing between human-written and AI-generated texts. However, these authorship analysis tasks have primarily been focused on written texts, not considering spoken texts. Thus, we introduce the largest benchmark for spoken texts - \sf HANSEN(\underlineHuman \underlineANd ai \underlineSpoken t\underlineExt be\underlineNchmark). \sf HANSEN encompasses meticulous curation of existing speech datasets accompanied by transcripts, alongside the creation of novel AI-generated spoken text datasets. Together, it comprises 17 human datasets, and AI-generated spoken texts created using 3 prominent LLMs: ChatGPT, PaLM2, and Vicuna13B. To evaluate and demonstrate the utility of \sf HANSEN, we perform Authorship Attribution (AA) & Author Verification (AV) on human-spoken datasets and conducted Human vs. AI text detection using state-of-the-art (SOTA) models. While SOTA methods, such as, character n-gram or Transformer-based model, exhibit similar AA & AV performance in human-spoken datasets compared to written ones, there is much room for improvement in AI-generated spoken text detection. The \sf HANSEN benchmark is available at: https://huggingface.co/datasets/HANSEN-REPO/HANSEN
%R 10.18653/v1/2023.findings-emnlp.916
%U https://aclanthology.org/2023.findings-emnlp.916
%U https://doi.org/10.18653/v1/2023.findings-emnlp.916
%P 13706-13724
Markdown (Informal)
[HANSEN: Human and AI Spoken Text Benchmark for Authorship Analysis](https://aclanthology.org/2023.findings-emnlp.916) (Tripto et al., Findings 2023)
ACL