@inproceedings{narasimhan-etal-2023-text,
title = "On Text Style Transfer via Style-Aware Masked Language Models",
author = "Narasimhan, Sharan and
H, Pooja and
Dey, Suvodip and
Desarkar, Maunendra Sankar",
editor = "Keet, C. Maria and
Lee, Hung-Yi and
Zarrie{\ss}, Sina",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-main.25",
doi = "10.18653/v1/2023.inlg-main.25",
pages = "362--374",
abstract = "Text Style Transfer (TST) is performable through approaches such as latent space disentanglement, cycle-consistency losses, prototype editing etc. The prototype editing approach, which is known to be quite successful in TST, involves two key phases a) Masking of source style-associated tokens and b) Reconstruction of this source-style masked sentence conditioned with the target style. We follow a similar transduction method, in which we transpose the more difficult direct source to target TST task to a simpler Style-Masked Language Model (SMLM) Task, wherein, similar to BERT (CITATION), the goal of our model is now to reconstruct the source sentence from its style-masked version. We arrive at the SMLM mechanism naturally by formulating prototype editing/ transduction methods in a probabilistic framework, where TST resolves into estimating a hypothetical parallel dataset from a partially observed parallel dataset, wherein each domain is assumed to have a common latent style-masked prior. To generate this style-masked prior, we use {``}Explainable Attention{''} as our choice of attribution for a more precise style-masking step and also introduce a cost-effective and accurate {``}Attribution-Surplus{''} method of determining the position of masks from any arbitrary attribution model in O(1) time. We empirically show that this non-generational approach well suites the {``}content preserving{''} criteria for a task like TST, even for a complex style like Discourse Manipulation. Our model, the Style MLM, outperforms strong TST baselines and is on par with state-of-the-art TST models, which use complex architectures and orders of more parameters.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="narasimhan-etal-2023-text">
<titleInfo>
<title>On Text Style Transfer via Style-Aware Masked Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sharan</namePart>
<namePart type="family">Narasimhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pooja</namePart>
<namePart type="family">H</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suvodip</namePart>
<namePart type="family">Dey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maunendra</namePart>
<namePart type="given">Sankar</namePart>
<namePart type="family">Desarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">Maria</namePart>
<namePart type="family">Keet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yi</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text Style Transfer (TST) is performable through approaches such as latent space disentanglement, cycle-consistency losses, prototype editing etc. The prototype editing approach, which is known to be quite successful in TST, involves two key phases a) Masking of source style-associated tokens and b) Reconstruction of this source-style masked sentence conditioned with the target style. We follow a similar transduction method, in which we transpose the more difficult direct source to target TST task to a simpler Style-Masked Language Model (SMLM) Task, wherein, similar to BERT (CITATION), the goal of our model is now to reconstruct the source sentence from its style-masked version. We arrive at the SMLM mechanism naturally by formulating prototype editing/ transduction methods in a probabilistic framework, where TST resolves into estimating a hypothetical parallel dataset from a partially observed parallel dataset, wherein each domain is assumed to have a common latent style-masked prior. To generate this style-masked prior, we use “Explainable Attention” as our choice of attribution for a more precise style-masking step and also introduce a cost-effective and accurate “Attribution-Surplus” method of determining the position of masks from any arbitrary attribution model in O(1) time. We empirically show that this non-generational approach well suites the “content preserving” criteria for a task like TST, even for a complex style like Discourse Manipulation. Our model, the Style MLM, outperforms strong TST baselines and is on par with state-of-the-art TST models, which use complex architectures and orders of more parameters.</abstract>
<identifier type="citekey">narasimhan-etal-2023-text</identifier>
<identifier type="doi">10.18653/v1/2023.inlg-main.25</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-main.25</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>362</start>
<end>374</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Text Style Transfer via Style-Aware Masked Language Models
%A Narasimhan, Sharan
%A H, Pooja
%A Dey, Suvodip
%A Desarkar, Maunendra Sankar
%Y Keet, C. Maria
%Y Lee, Hung-Yi
%Y Zarrieß, Sina
%S Proceedings of the 16th International Natural Language Generation Conference
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F narasimhan-etal-2023-text
%X Text Style Transfer (TST) is performable through approaches such as latent space disentanglement, cycle-consistency losses, prototype editing etc. The prototype editing approach, which is known to be quite successful in TST, involves two key phases a) Masking of source style-associated tokens and b) Reconstruction of this source-style masked sentence conditioned with the target style. We follow a similar transduction method, in which we transpose the more difficult direct source to target TST task to a simpler Style-Masked Language Model (SMLM) Task, wherein, similar to BERT (CITATION), the goal of our model is now to reconstruct the source sentence from its style-masked version. We arrive at the SMLM mechanism naturally by formulating prototype editing/ transduction methods in a probabilistic framework, where TST resolves into estimating a hypothetical parallel dataset from a partially observed parallel dataset, wherein each domain is assumed to have a common latent style-masked prior. To generate this style-masked prior, we use “Explainable Attention” as our choice of attribution for a more precise style-masking step and also introduce a cost-effective and accurate “Attribution-Surplus” method of determining the position of masks from any arbitrary attribution model in O(1) time. We empirically show that this non-generational approach well suites the “content preserving” criteria for a task like TST, even for a complex style like Discourse Manipulation. Our model, the Style MLM, outperforms strong TST baselines and is on par with state-of-the-art TST models, which use complex architectures and orders of more parameters.
%R 10.18653/v1/2023.inlg-main.25
%U https://aclanthology.org/2023.inlg-main.25
%U https://doi.org/10.18653/v1/2023.inlg-main.25
%P 362-374
Markdown (Informal)
[On Text Style Transfer via Style-Aware Masked Language Models](https://aclanthology.org/2023.inlg-main.25) (Narasimhan et al., INLG-SIGDIAL 2023)
ACL