@inproceedings{kim-etal-2024-pearl,
title = "Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset",
author = "Kim, Minjin and
Kim, Minju and
Kim, Hana and
Kwak, Beong-woo and
Kang, SeongKu and
Yu, Youngjae and
Yeo, Jinyoung and
Lee, Dongha",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.65",
doi = "10.18653/v1/2024.findings-acl.65",
pages = "1105--1120",
abstract = "Conversational recommender systems are an emerging area that has garnered increasing interest in the community, especially with the advancements in large language models (LLMs) that enable sophisticated handling of conversational input. Despite the progress, the field still has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that PEARL contains more specific user preferences, show expertise in the target domain, and provides recommendations more relevant to the dialogue context than those in prior datasets. Furthermore, we demonstrate the utility of PEARL by showing that our downstream models outperform baselines in both human and automatic evaluations. We release our dataset and code.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2024-pearl">
<titleInfo>
<title>Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minjin</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minju</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hana</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beong-woo</namePart>
<namePart type="family">Kwak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SeongKu</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youngjae</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinyoung</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongha</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational recommender systems are an emerging area that has garnered increasing interest in the community, especially with the advancements in large language models (LLMs) that enable sophisticated handling of conversational input. Despite the progress, the field still has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that PEARL contains more specific user preferences, show expertise in the target domain, and provides recommendations more relevant to the dialogue context than those in prior datasets. Furthermore, we demonstrate the utility of PEARL by showing that our downstream models outperform baselines in both human and automatic evaluations. We release our dataset and code.</abstract>
<identifier type="citekey">kim-etal-2024-pearl</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.65</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.65</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>1105</start>
<end>1120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset
%A Kim, Minjin
%A Kim, Minju
%A Kim, Hana
%A Kwak, Beong-woo
%A Kang, SeongKu
%A Yu, Youngjae
%A Yeo, Jinyoung
%A Lee, Dongha
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F kim-etal-2024-pearl
%X Conversational recommender systems are an emerging area that has garnered increasing interest in the community, especially with the advancements in large language models (LLMs) that enable sophisticated handling of conversational input. Despite the progress, the field still has many aspects left to explore. The currently available public datasets for conversational recommendation lack specific user preferences and explanations for recommendations, hindering high-quality recommendations. To address such challenges, we present a novel conversational recommendation dataset named PEARL, synthesized with persona- and knowledge-augmented LLM simulators. We obtain detailed persona and knowledge from real-world reviews and construct a large-scale dataset with over 57k dialogues. Our experimental results demonstrate that PEARL contains more specific user preferences, show expertise in the target domain, and provides recommendations more relevant to the dialogue context than those in prior datasets. Furthermore, we demonstrate the utility of PEARL by showing that our downstream models outperform baselines in both human and automatic evaluations. We release our dataset and code.
%R 10.18653/v1/2024.findings-acl.65
%U https://aclanthology.org/2024.findings-acl.65
%U https://doi.org/10.18653/v1/2024.findings-acl.65
%P 1105-1120
Markdown (Informal)
[Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset](https://aclanthology.org/2024.findings-acl.65) (Kim et al., Findings 2024)
ACL
- Minjin Kim, Minju Kim, Hana Kim, Beong-woo Kwak, SeongKu Kang, Youngjae Yu, Jinyoung Yeo, and Dongha Lee. 2024. Pearl: A Review-driven Persona-Knowledge Grounded Conversational Recommendation Dataset. In Findings of the Association for Computational Linguistics: ACL 2024, pages 1105–1120, Bangkok, Thailand. Association for Computational Linguistics.