CANE: Context-Aware Network Embedding for Relation Modeling

Cunchao Tu, Han Liu, Zhiyuan Liu, Maosong Sun


Abstract
Network embedding (NE) is playing a critical role in network analysis, due to its ability to represent vertices with efficient low-dimensional embedding vectors. However, existing NE models aim to learn a fixed context-free embedding for each vertex and neglect the diverse roles when interacting with other vertices. In this paper, we assume that one vertex usually shows different aspects when interacting with different neighbor vertices, and should own different embeddings respectively. Therefore, we present Context-Aware Network Embedding (CANE), a novel NE model to address this issue. CANE learns context-aware embeddings for vertices with mutual attention mechanism and is expected to model the semantic relationships between vertices more precisely. In experiments, we compare our model with existing NE models on three real-world datasets. Experimental results show that CANE achieves significant improvement than state-of-the-art methods on link prediction and comparable performance on vertex classification. The source code and datasets can be obtained from https://github.com/thunlp/CANE.
Anthology ID:
P17-1158
Volume:
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2017
Address:
Vancouver, Canada
Editors:
Regina Barzilay, Min-Yen Kan
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
1722–1731
Language:
URL:
https://aclanthology.org/P17-1158
DOI:
10.18653/v1/P17-1158
Bibkey:
Cite (ACL):
Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. 2017. CANE: Context-Aware Network Embedding for Relation Modeling. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1722–1731, Vancouver, Canada. Association for Computational Linguistics.
Cite (Informal):
CANE: Context-Aware Network Embedding for Relation Modeling (Tu et al., ACL 2017)
Copy Citation:
PDF:
https://aclanthology.org/P17-1158.pdf
Software:
 P17-1158.Software.zip
Dataset:
 P17-1158.Datasets.zip
Code
 thunlp/CANE
Data
Cora