@inproceedings{pei-li-2018-s2spmn,
title = "{S}2{SPMN}: A Simple and Effective Framework for Response Generation with Relevant Information",
author = "Pei, Jiaxin and
Li, Chenliang",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1082",
doi = "10.18653/v1/D18-1082",
pages = "745--750",
abstract = "How to generate relevant and informative responses is one of the core topics in response generation area. Following the task formulation of machine translation, previous works mainly consider response generation task as a mapping from a source sentence to a target sentence. To realize this mapping, existing works tend to design intuitive but complex models. However, the relevant information existed in large dialogue corpus is mainly overlooked. In this paper, we propose Sequence to Sequence with Prototype Memory Network (S2SPMN) to exploit the relevant information provided by the large dialogue corpus to enhance response generation. Specifically, we devise two simple approaches in S2SPMN to select the relevant information (named prototypes) from the dialogue corpus. These prototypes are then saved into prototype memory network (PMN). Furthermore, a hierarchical attention mechanism is devised to extract the semantic information from the PMN to assist the response generation process. Empirical studies reveal the advantage of our model over several classical and strong baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pei-li-2018-s2spmn">
<titleInfo>
<title>S2SPMN: A Simple and Effective Framework for Response Generation with Relevant Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>How to generate relevant and informative responses is one of the core topics in response generation area. Following the task formulation of machine translation, previous works mainly consider response generation task as a mapping from a source sentence to a target sentence. To realize this mapping, existing works tend to design intuitive but complex models. However, the relevant information existed in large dialogue corpus is mainly overlooked. In this paper, we propose Sequence to Sequence with Prototype Memory Network (S2SPMN) to exploit the relevant information provided by the large dialogue corpus to enhance response generation. Specifically, we devise two simple approaches in S2SPMN to select the relevant information (named prototypes) from the dialogue corpus. These prototypes are then saved into prototype memory network (PMN). Furthermore, a hierarchical attention mechanism is devised to extract the semantic information from the PMN to assist the response generation process. Empirical studies reveal the advantage of our model over several classical and strong baselines.</abstract>
<identifier type="citekey">pei-li-2018-s2spmn</identifier>
<identifier type="doi">10.18653/v1/D18-1082</identifier>
<location>
<url>https://aclanthology.org/D18-1082</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>745</start>
<end>750</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T S2SPMN: A Simple and Effective Framework for Response Generation with Relevant Information
%A Pei, Jiaxin
%A Li, Chenliang
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F pei-li-2018-s2spmn
%X How to generate relevant and informative responses is one of the core topics in response generation area. Following the task formulation of machine translation, previous works mainly consider response generation task as a mapping from a source sentence to a target sentence. To realize this mapping, existing works tend to design intuitive but complex models. However, the relevant information existed in large dialogue corpus is mainly overlooked. In this paper, we propose Sequence to Sequence with Prototype Memory Network (S2SPMN) to exploit the relevant information provided by the large dialogue corpus to enhance response generation. Specifically, we devise two simple approaches in S2SPMN to select the relevant information (named prototypes) from the dialogue corpus. These prototypes are then saved into prototype memory network (PMN). Furthermore, a hierarchical attention mechanism is devised to extract the semantic information from the PMN to assist the response generation process. Empirical studies reveal the advantage of our model over several classical and strong baselines.
%R 10.18653/v1/D18-1082
%U https://aclanthology.org/D18-1082
%U https://doi.org/10.18653/v1/D18-1082
%P 745-750
Markdown (Informal)
[S2SPMN: A Simple and Effective Framework for Response Generation with Relevant Information](https://aclanthology.org/D18-1082) (Pei & Li, EMNLP 2018)
ACL