@inproceedings{briakou-etal-2019-cross,
title = "Cross-Topic Distributional Semantic Representations Via Unsupervised Mappings",
author = "Briakou, Eleftheria and
Athanasiou, Nikos and
Potamianos, Alexandros",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1110",
doi = "10.18653/v1/N19-1110",
pages = "1052--1061",
abstract = "In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single vector space representation. In this work, we propose a DSM that learns multiple distributional representations of a word based on different topics. First, a separate DSM is trained for each topic and then each of the topic-based DSMs is aligned to a common vector space. Our unsupervised mapping approach is motivated by the hypothesis that words preserving their relative distances in different topic semantic sub-spaces constitute robust semantic anchors that define the mappings between them. Aligned cross-topic representations achieve state-of-the-art results for the task of contextual word similarity. Furthermore, evaluation on NLP downstream tasks shows that multiple topic-based embeddings outperform single-prototype models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="briakou-etal-2019-cross">
<titleInfo>
<title>Cross-Topic Distributional Semantic Representations Via Unsupervised Mappings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eleftheria</namePart>
<namePart type="family">Briakou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikos</namePart>
<namePart type="family">Athanasiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Potamianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single vector space representation. In this work, we propose a DSM that learns multiple distributional representations of a word based on different topics. First, a separate DSM is trained for each topic and then each of the topic-based DSMs is aligned to a common vector space. Our unsupervised mapping approach is motivated by the hypothesis that words preserving their relative distances in different topic semantic sub-spaces constitute robust semantic anchors that define the mappings between them. Aligned cross-topic representations achieve state-of-the-art results for the task of contextual word similarity. Furthermore, evaluation on NLP downstream tasks shows that multiple topic-based embeddings outperform single-prototype models.</abstract>
<identifier type="citekey">briakou-etal-2019-cross</identifier>
<identifier type="doi">10.18653/v1/N19-1110</identifier>
<location>
<url>https://aclanthology.org/N19-1110</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1052</start>
<end>1061</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Topic Distributional Semantic Representations Via Unsupervised Mappings
%A Briakou, Eleftheria
%A Athanasiou, Nikos
%A Potamianos, Alexandros
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F briakou-etal-2019-cross
%X In traditional Distributional Semantic Models (DSMs) the multiple senses of a polysemous word are conflated into a single vector space representation. In this work, we propose a DSM that learns multiple distributional representations of a word based on different topics. First, a separate DSM is trained for each topic and then each of the topic-based DSMs is aligned to a common vector space. Our unsupervised mapping approach is motivated by the hypothesis that words preserving their relative distances in different topic semantic sub-spaces constitute robust semantic anchors that define the mappings between them. Aligned cross-topic representations achieve state-of-the-art results for the task of contextual word similarity. Furthermore, evaluation on NLP downstream tasks shows that multiple topic-based embeddings outperform single-prototype models.
%R 10.18653/v1/N19-1110
%U https://aclanthology.org/N19-1110
%U https://doi.org/10.18653/v1/N19-1110
%P 1052-1061
Markdown (Informal)
[Cross-Topic Distributional Semantic Representations Via Unsupervised Mappings](https://aclanthology.org/N19-1110) (Briakou et al., NAACL 2019)
ACL
- Eleftheria Briakou, Nikos Athanasiou, and Alexandros Potamianos. 2019. Cross-Topic Distributional Semantic Representations Via Unsupervised Mappings. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1052–1061, Minneapolis, Minnesota. Association for Computational Linguistics.