@inproceedings{yu-etal-2017-general,
title = "A General-Purpose Tagger with Convolutional Neural Networks",
author = "Yu, Xiang and
Falenska, Agnieszka and
Vu, Ngoc Thang",
editor = "Faruqui, Manaal and
Schuetze, Hinrich and
Trancoso, Isabel and
Yaghoobzadeh, Yadollah",
booktitle = "Proceedings of the First Workshop on Subword and Character Level Models in {NLP}",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4118",
doi = "10.18653/v1/W17-4118",
pages = "124--129",
abstract = "We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem; it performs well on artificially unnormalized texts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-etal-2017-general">
<titleInfo>
<title>A General-Purpose Tagger with Convolutional Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Falenska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Subword and Character Level Models in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manaal</namePart>
<namePart type="family">Faruqui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schuetze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Trancoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem; it performs well on artificially unnormalized texts.</abstract>
<identifier type="citekey">yu-etal-2017-general</identifier>
<identifier type="doi">10.18653/v1/W17-4118</identifier>
<location>
<url>https://aclanthology.org/W17-4118</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>124</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A General-Purpose Tagger with Convolutional Neural Networks
%A Yu, Xiang
%A Falenska, Agnieszka
%A Vu, Ngoc Thang
%Y Faruqui, Manaal
%Y Schuetze, Hinrich
%Y Trancoso, Isabel
%Y Yaghoobzadeh, Yadollah
%S Proceedings of the First Workshop on Subword and Character Level Models in NLP
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yu-etal-2017-general
%X We present a general-purpose tagger based on convolutional neural networks (CNN), used for both composing word vectors and encoding context information. The CNN tagger is robust across different tagging tasks: without task-specific tuning of hyper-parameters, it achieves state-of-the-art results in part-of-speech tagging, morphological tagging and supertagging. The CNN tagger is also robust against the out-of-vocabulary problem; it performs well on artificially unnormalized texts.
%R 10.18653/v1/W17-4118
%U https://aclanthology.org/W17-4118
%U https://doi.org/10.18653/v1/W17-4118
%P 124-129
Markdown (Informal)
[A General-Purpose Tagger with Convolutional Neural Networks](https://aclanthology.org/W17-4118) (Yu et al., SCLeM 2017)
ACL