Paper:
Design of Competitive Maintenance Service for Durable and Capital Goods Using Life Cycle Simulation
Hitoshi Komoto*,** and Tetsuo Tomiyama*
*Intelligent Mechanical Systems Group, Department of Biomechanical Engineering,
Faculty of Mechanical Maritime and Materials Engineering, Delft University of Technology
Mekelweg 2, 2628 CD Delft, the Netherlands
**Design for Sustainability Group, Department of Design Engineering,
Faculty of Industrial Design Engineering, Delft University of Technology
Landbergstraat 15, 2628 CE Delft, the Netherlands
- [1] Y. Umeda, A. Nonomura, and T. Tomiyama, “Study on life-cycle design for the post mass production paradigm” Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Vol.14, pp. 149-61, 2000.
- [2] L. H. Shu, D. R. Wallace, and W. C. Flowers, “Probabilistic Methods in Life-Cycle Design,” Proceedings of IEEE International Symposium on Electronics and the Environment, Dallas, TX, pp. 7-12, 1996.
- [3] S. Takata, A. Yamada, T. Kohda, and H. Asama, “Life Cycle Simulation Applied to a Robot Manipulator -- An Example of Aging Simulation of Manufacturing Facilities --,” Annals of the CIRP 47(1), pp. 397-400, 1998.
- [4] J. Fujimoto, Y. Umeda, T. Tamura, T. Tomiyama, and F. Kimura, “Development of Service-Oriented Products Based on the Inverse Manufacturing Concept,” Environmental Science & Technology, Vol.37, No.23, pp. 5398-5406, 2003.
- [5] S. Kato and F. Kimura, "The Product Life Cycle Design Method using a Strategic Analysis," 11th International CIRP Life Cycle Engineering Seminar "Product Life Cycle -- Quality Management Issues,'' Belgrade, Serbia, 2004.
- [6] T. Kumazawa and H. Kobayashi, "A simulation system to support the establishment of circulated business, Advanced Engineering Informatics, Vol.20, pp.127-36, 2006.
- [7] S. Kondoh, M. Soma, and Y. Umeda, “Simulation of closed-loop manufacturing systems focused on material balance of forward and inverse flows,” International Journal of Environmental Conscious Design and Manufacturing, Vol.13, No.2, 2005.
- [8] H. Komoto, T. Tomiyama, M. Nagel, S. Slivester, and H. Brezet, “Life Cycle Simulation for Analyzing Product Service Systems,” 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing (EcoDesign 2005), IEEE, pp. 386-393, 2005.
- [9] H. Komoto and T. Tomiyama, “Integration of a Service CAD and a Life Cycle Simulator,” Annals of the CIRP 57(1), pp. 9-12, 2008.
- [10] T. E. Graedel and B. R. Allenby, “Industrial Ecology, Prentice Hall,” 1995.
- [11] S. K. Dujairaj, S. K. Ong, A. Y. C. Nee, and R. B. H. Tan, “Evaluation of Life Cycle Cost Analysis Methodologies,” Corporate Environmental Strategy, 9(1), pp. 30-39, 2002.
- [12] Arena, www.arenasimulation.com (visited on 05.11.2008)
- [13] Delmia, http://www.3ds.com/products/delmia (visited on 05.11.2008)
- [14] P. Geogiadis and D. Vlachos, “The effect of environmental parameters on product recovery,” European Journals of Operational Research, Vol.157, pp. 449-464, 2004.
- [15] P.P.A.A.H. Kandelaars, J.C.J.M. van den Bergh, “Dynamic analysis of materials-product chains: An application to window frames,” Ecological Economics, Vol.22, pp. 41-61, 1997.
- [16] M. Chouinard, S. D'Amours, and D. Ait-Kadi, “A stochastic programming approach for designing supply loops,” International Journals of Production Economics, Vol.113, pp. 657-677, 2008.
- [17] M. Fleischmann, M. B. R. Jacqueline, R. Dekker, E. van der Laan, J.A.E.E. van Nunen, L.N. van Wassenhove, “Quantitative models for reverse logistics: A review,” European Journals of Operational Research, Vol.103, pp. 1-17, 1997.
- [18] T. Tomiyama, “Service Engineering to intensify service contents in product life cycles,” Proceedings of the Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing (EcoDesign 2001), IEEE Computer Society, pp. 613-8, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.