Paper:
A Universal Autonomous Robot Navigation Method
Annamária R. Várkonyi-Kóczy
Dept. of Measurement and Information Systems, Budapest University of Technology, and Economics Integrated Intelligent Systems Japanese-Hungarian Laboratory, Magyar tudósok körútja 2., H-1117 Budapest, Hungary
- [1] M. Sugeno, H. Winston, I. Hirano, and S. Kotsu, “Intelligent Control of an Unmanned Helicopter Based on Fuzzy Logic,” Proc. of the NATO ASI Conf. on Soft Computing and Its Application, Antalya, Turkey, 1996.
- [2] D. Wettergreen, C. Gaskett, and A. Zelinsky, “Development of a Visually-Guided Autonomous Underwater Vehicle,” Proc. of the IEEE Conf. on OCEANS98, 1998.
- [3] H. Blåsvær, P. Pirjanian, and H. I. Christensen, “AMOR - An Autonomous Mobile Robot Navigation System,” Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, 3, pp. 2266-2271, 1994.
- [4] J. Latombe, “Robot Motion Planning,” Kluwer Academic Publishers, Boston, MA, USA, 1991.
- [5] J. Borenstein and Y. Koren, “The Vector Field Histogram - Fast Obstacle Avoidance for Mobile Robots,” IEEE Transactions on Robotics and Automation, Vol.7, No.3, pp. 278-288, 1991.
- [6] A. Saffiotti, E. H. Ruspini, and K. Konolige, “Using Fuzzy Logic for Mobile Robot Control,” In: Practical applications of fuzzy technologies. (H.-J. Zimmermann (Ed.)), Kluwer Academic Publishers, pp. 185-206, 1999.
- [7] G. Cheng and A. Zelinsky, “Goal-oriented Behaviour-based Visual Navigation,” Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA’98), Leuven, Belgium, 1998.
- [8] E. Fabrizi and A. Saffiotti, “Extracting Topology-Based Maps From Gridmaps,” Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA’2000, pp. 2972-2978, San Francisco, CA, USA, 2000.
- [9] M. Bertozzi, A. Broggi, and A. Fascioli, “Real-Time Obstacle Detection using Stereo Vision,” Proc. of the VIII European Signal Processing Conf., EUSIPCO-96, pp. 1463-1466, Trieste, Italy, 1996.
- [10] K. Steinkraus and L. P. Kaelbling, “Optical Flow for Obstacle Detection in Mobile Robots,” Artificial Intelligence Laboratory, MIT, 2001.
- [11] M. Grünewald and J. Sitte, “A Resource-Efficient Approach to Obstacle Avoidance via Optical Flow,” Proc. of the 5th Int. Heinz Nixdorf Symposium: Autonomous Minirobots for Research and Edutainment (AMIRE), HNI-Verlags-schriftenreihe 97, pp. 205-214, Heinz Nixdorf Institute, 2001.
- [12] L. M. Lorigo, R. A. Brooks, and W. E. L. Grimson, “Visually-Guided Obstacle Avoidance in Unstructured Environments,” Proc. of the IEEE Conf. on Intelligent Robots and Systems, Grenoble, France, 1997.
- [13] C. Gaskett, L. Fletcher, and A. Zelinsky, “Reinforcement Learning for a Vision Based Mobile Robot,” Robotic Systems Laboratory, The Australian National University, 2000.
- [14] A. Saffiotti, “Fuzzy Logic in Autonomous Robotics: Behavior Coordination,” Proc. of the 6th IEEE Int. Conf. on Fuzzy Systems, pp. 573-578, Barcelona, Spain, 1997.
- [15] S. W. Soliday, “A Subsystem Approach to Developing a Behavioral Based Hybrid Navigation System For Autonomous Vehicles,” Master’s Thesis, Department of Electrical Engineering, North Carolina A&T University, Greensboro, NC, USA, 1995.
- [16] E. Fabrizi and A. Saffiotti, “Behavioral Navigation on Topology-Based Maps,” Proc. of the 8th Int. Symposium on Robotics with Applications, Maui, Hawaii, USA, 2000.
- [17] M. Visontai, Sz. Szabó, P. Baranyi, A. R. Várkonyi-Kóczy, and L. Kiss, “3-Dimensional Potential Based Guiding,” Proc. of the IEEE Conf. on Intelligent Engineering Systems, INES2000, pp. 306-309, Portorož, Slovenia, 2000.
- [18] M. Visontai, Sz. Szabó, A. R. Várkonyi-Kóczy, P. Baranyi, G. Samu, and L. Kiss, “Complexity Problem of the Potential Based Guiding,” Proc. of the IFAC Symposium on Artificial Intelligence and Real-Time Control, AIRTC2000, pp. 145-149. Budapest, Hungary, 2000.
- [19] P. Korondi, A. R. Várkonyi-Kóczy, Sz. Kovács, P. Baranyi, and M. Sugiyama, “Virtual Training of Potential Function Based Guiding Styles,” Proc. of the Joint 9th IFSA World Congress and 20th NAFIPS Int. Conf., IFSA/NAFIPS 2001, pp. 2529-2534, 2001.
- [20] L. Kiss, A. R. Várkonyi-Kóczy, and P. Baranyi, “Autonomous Navigation in a Known Dynamic Environment,” proc. of the 12th IEEE Int. Conf. on Fuzzy Systems, FUZZ-IEEE’2003, pp. 266-271, St. Louis, USA, 2003.
- [21] J. Gasós and A. Saffiott, “Integrating Fuzzy Geometric Maps and Topological Maps for Robot Navigation,” Proc. of the 3rd Int. Symposium on Soft Computing (SOCO), Genova, Italy, 1999.
- [22] S. Thrun, J. Gutmann, D. Fox, W. Burgard, and B. Kuipers, “Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach,” Proc. of the 15th National Conf. on Artificial Intelligence (AAAI), pp. 989-995. Madison, WI, USA, AAAI/MIT Press, 1998.
- [23] S. Thrun, “Learning Maps for Indoor Mobile Robot Navigation,” Artificial Intelligence, Vol.99, pp. 21-71, 1998.
- [24] S. J. Russell and P. Norvig, “Artificial Intelligence – A Modern Approach,” Prentice-Hall, 1995.
- [25] A. Stentz, “Map-Based Strategies for Robot Navigation in Unknown Environments,” Proc. of the AAAI Spring Symposium on Planning with Incomplete Information for Robot Problems, 1996.
- [26] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known Environments,” Proc. Of the IEEE Int. Conf. on Robotics and Automation , San Diego, CA, Vol.4, pp. 3310-3317, May 1994.
- [27] C. Tovey, S. Greenberg, and S. Koenig, “Improved analysis of D*,” Proc. of the IEEE Int. Conf. on Robotics and Automation, ICRA’2003, Vol.3, pp. 3371- 3378, 2003.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.