Paper:
An Evolutionary Hybrid Scheduling Algorithm for Computational Grids
Shajulin Benedict*, Rejitha R. S**, and V. Vasudevan*
*Software Technologies Lab, TIFAC Core in Network Engineering
Sirivilliputhur, India-626190
**Department of Computer Engineering, Kalasalingam University
Sirivilliputhur, India- 626190
- [1]
F. Berman, G. Fox, and T. Hey (eds), “Grid Computing: Makiing the Global Infrastructure a Reality,” Wiley, pp. 110-115, 2003.
M. Cannataro, D. Talia, and P.Trunfio, “Distributed data mining on the grid, Future Generation Computer Systems,” Vol.18, pp. 1101-1112, 2002.
J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Thecke, “Condor-G: A Computation Management Agent for Multi-Instituitional Grids,” Journal of Cluster Computing, Vol.5, pp. 237-246, 2002.
P. F. Gorder, “Grid computing yields earthquake forecast,” News in Computing in Science and Engineering, pp. 6-10, 2007.
P. Manish and J. C. Browne, “Conceptual and Implementation models for the grids,” Proc. of the IEEE Vol.93, No.3. pp. 653-668, March, 2005.
S. Song, K. Hwang, and Y.-K. Kwok, “Risk Resilient Heuristics and Genetic algorithm for security assured Grid Job Scheduling,” IEEE Trans. on Computers, Vol.5, No.6, pp. 703-719, June. 2006.
J. L. Vazquez-Poletti et al., “Workflow Management in a protein clustering application,” in Proc. Of 7th Int. Conf. on cluster computing and the Grid (CCGrid' 07), 2007.
J. Y. Halpern and Y. Moses, “Knowledge and common knowledge in a distributed environment,” Journal of ACM, Vol.37, No.3, pp. 549-587, 1990.
R. Real, A. Yamin, L. da Silva, G. Frainer, I. Augustin, J. Barbosa, and C. Geyer, “Resouirce Scheduing on Grid: Handling Uncertainty,” Proc. of the Fourth Int. Workshop on Grid computing, pp. 205-207, 2005.
W. Marek, P. Radu, and F. Thoas, “Scheduling of Scientific Workflows in the ASKALON Grid Enivironment,” SIGMOD Record, Vol.34, No.3, pp. 56-62, Sept., 2005.
A. Alain, et al. [Online] “Open Issues for Grid scheduling,” Available here.
C.-H. Chien, P. H.-M. Chang, and V.-W. Soo, “Market Oriented Multiple Resource Scheduling in Grid Computing Environments,” Proc. of the 19th Int. Conf. on Advanced Information Networking and Applications (AINA'05), pp. 862-872, IEEE 2005.
Y. Hui, et al., “An Improved ant algorithm for job scheduling in grid computing,” In Proc. of 4th Int. Conf. on machine, learning and cybernetics, pp. 2957-2961, Aug., 2005.
V. Di Martino and M. Mililotti, “Scheduling in a Grid computing environment using Genetic Algorithms,” Proc. of the Int. Parallel and Distributed Processing Symposium, IEEE 2002.
J. Horn, N. Nafploitis, and D. E. Goldberg, “A Niched Pareto Genetic Algorithm for Multi Objective Optimization,” Proc. of the First IEEE Int. Conf. on Evolutionary Computation, IEEE Press, Piscataway, NJ, pp. 82-87, 1994.
S. Benedict, et al, “Scheduling scientific workflows using Niched Pareto GA for Grids,” in Proc of IEEE Int. Conf. of Services, Operations, Logistics, pp. 908-912, June, 2006.
S. Benedict and V. Vasudevan, “Improving Scheduling of scientific workflows using Tabu Search for Computational Grids,” Information Technology Journal, 7(1), pp. 91-97, 2008.
S. Benedict and V. Vasudevan, “Scheduling of scientific workflows using Simulated annealing algorithm for Computational Grids,” Int. Journal of Soft Computing, Vol.2, No.5, pp. 606-611, July 2007.
S. Benedict and V. Vasudevan, “Scheduling of scientific workflows using Discrete PSO for Grids,” JCIT: Journal of Convergence and Information Technology, Vol.2, No.4, pp. 29-35, 2007.
P. J. M. Van Laarhovan and E. H. L. Aarts, “Simulated annealing: Theory and applications,” Dordrecht, Kluwer academic, 1987.
S. Benedict and V. Vasudevan, “A Niched Pareto GA approach of scheduling scientific workflows in wireless Grids,” accepted for publication in Journal of computing and Information Technology, Europe, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.