UncertainSCI: A Python Package for Noninvasive Parametric Uncertainty Quantification of Simulation Pipelines

Python Submitted 21 January 2022Published 27 October 2023
Review

Editor: @kellyrowland (all papers)
Reviewers: @shahmoradi (all reviews), @RichardClayton (all reviews), @kellyrowland (all reviews)

Authors

Jess Tate (0000-0002-2934-1453), Zexin Liu (0000-0003-3409-5709), Jake A. Bergquist (0000-0002-4586-6911), Sumientra Rampersad (0000-0001-9860-4459), Dan White, Chantel Charlebois (0000-0002-4139-3539), Lindsay Rupp (0000-0002-2688-7688), Dana H. Brooks (0000-0003-3231-6715), Rob S. MacLeod (0000-0002-0000-0356), Akil Narayan (0000-0002-5914-4207)

Citation

Tate et al., (2023). UncertainSCI: A Python Package for Noninvasive Parametric Uncertainty Quantification of Simulation Pipelines. Journal of Open Source Software, 8(90), 4249, https://doi.org/10.21105/joss.04249

@article{Tate2023, doi = {10.21105/joss.04249}, url = {https://doi.org/10.21105/joss.04249}, year = {2023}, publisher = {The Open Journal}, volume = {8}, number = {90}, pages = {4249}, author = {Jess Tate and Zexin Liu and Jake A. Bergquist and Sumientra Rampersad and Dan White and Chantel Charlebois and Lindsay Rupp and Dana H. Brooks and Rob S. MacLeod and Akil Narayan}, title = {UncertainSCI: A Python Package for Noninvasive Parametric Uncertainty Quantification of Simulation Pipelines}, journal = {Journal of Open Source Software} }
Copy citation string · Copy BibTeX  
Tags

uncertainty quantification computer modeling polynomial chaos bioelectricity

Altmetrics
Markdown badge

 

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Table of Contents
Public user content licensed CC BY 4.0 unless otherwise specified.
ISSN 2475-9066