On some characterization of \(Q\)-complex fuzzy sub-rings
-
1638
Downloads
-
2970
Views
Authors
Muhammad Gulzar
- Department of Mathematics, Government College University Faisalabad, 38000, Pakistan.
Dilshad Alghazzawi
- Department of Mathematics, King Abdulaziz University (Rabigh), Saudi Arabia.
M. Haris Mateen
- Department of Mathematics, University of the Punjab, Lahore, Pakistan.
M. Premkumar
- Research Scholar, PG and Research Department of Mathematics, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), India.
- Department of Mathematics, Kongunadu College of Engineering and Technology, Tiruchirappalli-620020, Tamilnadu, India.
Abstract
In this paper, we introduce the idea of \(Q\)-complex fuzzy sub-ring
(\(Q\)-CFSR) and discuss its various algebraic aspects. We prove that
every \(Q\)-CFSR generates two \(Q\)-fuzzy sub-rings (\(Q\)-FSRs).
We also present the concept of level subsets of \(Q\)-CFSR and show that level subset of \(Q\)-CFSR form sub-ring. Furthermore, we extend
this idea to define the notion of the direct product of two \(Q\)-CFSR
Moreover, we investigate the homomorphic image and inverse image of \(Q\)-CFSR.
Share and Cite
ISRP Style
Muhammad Gulzar, Dilshad Alghazzawi, M. Haris Mateen, M. Premkumar, On some characterization of \(Q\)-complex fuzzy sub-rings, Journal of Mathematics and Computer Science, 22 (2021), no. 3, 295--305
AMA Style
Gulzar Muhammad, Alghazzawi Dilshad, Mateen M. Haris, Premkumar M., On some characterization of \(Q\)-complex fuzzy sub-rings. J Math Comput SCI-JM. (2021); 22(3):295--305
Chicago/Turabian Style
Gulzar, Muhammad, Alghazzawi, Dilshad, Mateen, M. Haris, Premkumar, M.. "On some characterization of \(Q\)-complex fuzzy sub-rings." Journal of Mathematics and Computer Science, 22, no. 3 (2021): 295--305
Keywords
- Complex fuzzy set (CFS)
- \(Q\)-complex fuzzy set (\(Q\)-CFS)
- \(Q\)-complex fuzzy sub-ring (\(Q\)-CFSR)
MSC
References
-
[1]
G. M. Addis, Fuzzy homomorphism theorem on groups, Korean J. Math., 26 (2018), 373--385
-
[2]
M. N. Alemu, Fuzzy model for chaotic time series prediction, Int. J. Innov. Comput. Info. Control, 14 (2018), 1767--1786
-
[3]
F. A. Azam, A. A. Mamun, F. Nasrin, Anti fuzzy ideal of ring, Ann. Fuzzy Math. Inform., 25 (2013), 349--360
-
[4]
J. J. Buckley, Fuzzy complex numbers, Fuzzy Sets and Systems, 33 (1989), 333--345
-
[5]
D.-G. Chen, S.-Y. Li, Fuzzy Factor Rings, Fuzzy Sets and Systems, 94 (1998), 125--127
-
[6]
M. Gulistan, N. Yaqoob, S. Nawaz, M. Azhar, A study of $(\alpha, \beta)$-complex fuzzy hyper ideas in non-associative hyperrings, J. Intell. Fuzzy Syst., 36 (2019), 1--17
-
[7]
B. Hu, L. Bi, S. Dai, S. Li, Distances of complex fuzzy sets and continuity of complex fuzzy operations, J. Intell. Fuzzy Syst., 35 (2018), 2247--2255
-
[8]
B. Hu, L. Bi, S. Dai, S. Li, The approximate parallelity of complex fuzzy sets, J. Intell. Fuzzy Syst., 35 (2018), 6343--6351
-
[9]
N. Kausar, Direct product of finite intuitionistic fuzzy normal subrings over non-associative rings, Eur. J. Pure Appl. Math., 12 (2019), 622--648
-
[10]
N. Kausar, B. U. Islam, M. Y. Javid, S. A. Ahmed, U. Ijaz, Characterization of non-associative rings by the properties of their fuzzy ideals, J. Taibah Univ. Sci., 13 (2019), 820--833
-
[11]
R. Kellil, Sum and product of fuzzy ideals of ring, Int. J. Comput. Sci., 33 (2018), 187--205
-
[12]
K. C. Lee, K. Hur, P. K. Lim, Interval-Valued Fuzzy Ideals of a Ring, Int. J. Fuzzy Log. Intell. Syst., 12 (2012), 198--204
-
[13]
W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133--139
-
[14]
B. B. Makamba, V. Murali, A class of fuzzy subgroups of finite reflection groups, J. Intell. Fuzzy Syst., 33 (2017), 979--983
-
[15]
D. S. Malik, J. N. Mordeson, Fuzzy homomorphism of rings, Fuzzy Sets and Systems, 8 (1992), 139--146
-
[16]
Y. Qin, Y. Liu, Z. Hong, H. Jia, Hesitant fuzzy muirhead mean operators and its application to multiple attribute decision making, Int. J. Innov. Comput. Inf. Control, 14 (2018), 1223--1238
-
[17]
D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE Trans. Fuzzy Syst., 11 (2003), 171--186
-
[18]
D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 450--461
-
[19]
R. Rasuli, Characterization of $Q$-fuzzy subrings (Anti $Q$-fuzzy subrings) with respect to a $T$-norm ($T$-conform), J. Inf. Optimiz. Sci., 39 (2018), 827--837
-
[20]
A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512--517
-
[21]
A. Sehgal, S. Sehgal, P. K. Sharma, The number of fuzzy subgroups of a finite dihedral $D_{pmpn}$, Int. J. Fuzzy Math. Arch., 8 (2015), 51--57
-
[22]
A. Sehgal, S. Sehgal, P. K. Sharma, The number of fuzzy subgroups of finite abelian $p$-group $Z_{pm}\times Z_{pn}$, Adv. Fuzzy Sets Syst., 21 (2016), 49--57
-
[23]
G. Selvachandran, P. K. Maji, I. E. Abed, A. R. Salleh, Relations between complex vague soft sets, Appl. Soft Comput., 47 (2016), 438--448
-
[24]
D. Shan, W. Lu, J. Yang, The data-driven fuzzy cognitive map model and its application to prediction of time series, Int. J. Innov. Comput. Inf. Control, 14 (2018), 1583--1602
-
[25]
D. Singh, V. Joshi, M. Imdad, P. Kumam, A novel framework of complex valued fuzzy metric spaces and fixed point theorems, J. Intell. Fuzzy Syst., 30 (2016), 3227--3238
-
[26]
A. Solairaju, R. Nagarajan, A new structure and construction of $Q$-fuzzy groups, Adv. Fuzzy Math., 4 (2009), 23--29
-
[27]
P. Thirunavukarasu, R. Suresh, P. Thamilmani, Application of complex fuzzy sets, JP J. Appl. Math., 6 (2013), 5--22
-
[28]
P. Thirunavukarasu, R. Suresh, K. K. Viswanathan, Energy of complex fuzzy graph, Int. J. Math. Sci. Eng. Appls., 10 (2016), 243--248
-
[29]
S. A. Trevijano, M. J. Chasco, J. Elorza, The annihilator of fuzzy subgroups, Fuzzy Sets and Systems, 369 (2019), 122--131
-
[30]
E. Yetkin, N. Olgun, Direct product of fuzzy groups and fuzzy rings, Int. Math. Forum, 6 (2011), 1005--1015
-
[31]
Y. B. Yun, X. L. Xin, Complex fuzzy sets with application in $BCK/BCI$-Algebras, Bull. Sect. Log., 48 (2019), 173--185
-
[32]
L. A. Zadeh, Fuzzy set, Information and Control, 8 (1965), 338--353
-
[33]
G. Q. Zhang, T. S. Dillon, K. Y. Cai, J. Ma, J. Lu, Operation properties and $\delta up$-equalities of complex fuzzy sets, Internat. J. Approx. Reason, 50 (2009), 1227--1249