Hiding Information into OOXML Documents: New
Steganographic Perspectives®

Aniello Castiglione' Bonaventura D’ Alessio Alfredo De Santis
Dipartimento di Informatica Dipartimento di Informatica Dipartimento di Informatica
University of Salerno University of Salerno University of Salerno
Salerno, Italy Salerno, Italy Salerno, Italy

castiglione@acm.org bdalessio@dia.unisa.it ads@dia.unisa.it

Francesco Palmieri
Dipartimento di Ingegneria dell’ Informazione
Second University of Naples
Aversa (CE), Italy
francesco.palmieri @unina.it

Abstract

The simplest container of digital information is “the file” and among the vast array of files currently
available, MS-Office files are probably the most widely used. The “Microsoft Compound Document
File Format” (MCDFF) has often been used to host secret information. The new format created
by Microsoft, first used with MS-Office 2007, makes use of a new standard, the Office Open
XML Formats” (OOXML). The benefits include that the new format introduces the OOXML format,
which lowers the risk of information leakage, as well as the use of MS-Office files as containers for
steganography.

In this work the authors, starting from the classification of information hiding adapted from Bauer,
analyze four new methods for embedding data into the OOXML file format. These methods can
be extremely useful when using MS-Office documents for steganographic purposes. The authors,
analyzing a scenario composed of about 50.000 MS-Office files, highlight how the proposed methods
are really helpful in real applications. An evaluation of the limits of the proposed methods is carried
out by comparing them against the tool introduced by Microsoft to sanitize MS-Office files. The
methods presented can be combined in order to extend the amount of data to be hidden in a single
cover file.

Keywords: Steganography, OOXML format, stegosystem, document steganography, microsoft office
document, information hiding.

1 Introduction

The MS-Office suite is probably the most widely used word-processing tool when preparing and writing
documents, spreadsheets and presentations [2f]. Therefore, the possibility to hide information inside them
is a challenge that probably interests many different parties. Starting with the 2007 version (MS-Office
2007), Microsoft has completely changed the format of its files increasing, among other things, the level
of security and thus making it more difficult to hide information inside them. In fact, it has gone from

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 2, number: 4, pp. 59
*This paper is an extended version of the work originally presented at the 6th International Conference on Availability,
Reliability and Security (ARES’11), Vienna, Austria, August 2011 [1]
TCorresponding author: Aniello Castiglione, 5 Dipartimento di Informatica - Universita degli Studi di Salerno, Via Ponte don
Melillo, I-84084 Fisciano (SA), Italy. &:+39089969594, &: +39089969821, ®: castiglione@ieee.org, castiglione®
acm.org

59


callto:+39089969594
callto:+39089969821
castiglione@ieee.org,castiglione@acm.org
castiglione@ieee.org,castiglione@acm.org

Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

using the old binary format to the new OOXML [3]], which uses XML files. In addition, in order to
guarantee a significantly high level of “privacy and security”, it has also presented the feature Document
Inspector, which makes it possible to quickly identify and remove any sensitive, hidden and personal
information. It is therefore evident that the old methodologies of Information Hiding that exploit the
characteristics of the binary files of MS-Office are no longer applicable to the new XML structures.
However, the steganography techniques that take advantage of the functions offered by the Microsoft
suite ( [4], [5], [6], [7]) are still valid and therefore do not depend on the version used. The new format
offers new perspectives, as proposed by Garfinkel et al. [[8] and by Park et al. [9]]. Both authors describe
methodologies that use characteristics that do not conform to the OOXML standard and therefore can be
characterized by searching for abnormal content type that is not described in the OOXML specifications
inside of the file. This study proposes and analyzes four new steganography techniques for MS-Office files,
with only the first not taking advantage of characteristics that do not conform to the OOXML standard.

The remaining of this paper is structured as follows. Section [2] introduces the OOXML standard
and the features of the Document Inspector. Section [3]introduces the terminology and classification
that will help to better understand the following of the paper. Section [] discusses the methodology
that takes advantage of the possibility to use different compression algorithms in generating MS-Office
files. Section [Slillustrates how the macro of MS-Office can be used to hide information. In Section|6la
methodology that uses images not visualized by MS-Office, but present in the file, is analyzed in order
to contain hidden information. Section [7]highlights how it is possible to hide data in the values of the
attribute that specifies a unique identifier used to track the editing session (by using the revision identifiers).
In Section [§|the methodologies are compared in order to verify the overhead introduced by them as well
as to analyzed the behavior of “save” operation. Finally, in Section 9] the results of test are presented.

2 The OOXML Format

Starting with the 2007 version, Microsoft has adopted the OOXML format based on XML. In fact,
Microsoft started the transition from the old binary file format to a new one that uses XML files. The
eXtensible Markup Language (XML) is used for the representation of structured data and documents. It is
a markup language and, thus, composed of instructions, defined as tags and markers. Therefore, in XML a
document is described, in form and content, by a sequence of elements. Every element is defined by a tag
or a pair start-tagl/end-tag, which can have one or more attributes. These attributes define the properties
of the elements in terms of values. The OOXML format is based on the principle that even a third party,
without necessarily owning product rights, can extract and relocate the contents of the MS-Office file
just by using standard transformation methods. This is possible because XML text is clearly written and
therefore visible and modifiable with any text editor. Moreover, OLE attachments are referenced in the
source file and therefore can be visualized with any compatible viewer.

Distinguishing documents produced in this new format is easy due to the file extensions being
characterized by an “x” at the end, with the Word, Excel and PowerPoint files respectively being .docx,
.xlsx, and.pptx. An additional feature is that macros are not activated unless specified by the user. In this
case, the extension of the files changes by adding “m” rather than “x” and thus become .docm, .xlsm,
and.pptm. The new structure of an OOXML file, which is based on the ECMA-376 standard [10]], uses a a
ZIP file container, which contains a set of files, mostly XML properly organized into folders describing
the content, the properties and the relationships. It is highly likely that the ZIP standard was chosen
because it is one of the most widely adopted on the Internet. In addition, it have the characteristic of
flexibility and modularity which allows for any eventual expansions in future functionalities [[11]].

There are three types of files stored in the “container”, that can be common to all the applications of
MS-Office or specific for each one:

60



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

e XML files, which describe application data, metadata, and even customer data, stored inside the
container file;

e non-XML files, may also be included within the container, including such parts as binary files
representing images or OLE objects embedded in the document;

o relationship parts that specify the relationships between the parts; this design provides the structure
for an MS-Office file.

For example, analyzing a simple Word document, the structure [|12] of the folders and files will be
like that shown in Fig.[I]

simpledocument

docProps

@

= app.xml

@

= core.xml

word.xml

£ document.xml

_rels

@

=.rels
[Content_Types].xml

e

Figure 1: Structure of a simple Word document.

Therefore, beginning from version 2007, the MS-Office documents are based on the ZIP standard,
contain XML files, have common characteristics and formats to those of generic MS-Office files (character
format, cell properties, collaborative document, etc.), may contain OLE objects (images, audio files, etc.)
as well as conform to the ECMA-376 standard, properly customized. Another key concept related to
the OOXML format is the modularity, which allows for either the easy addition of new elements or the
removal of old ones. For example, the addition of a new JPEG image inside a Word file could be simply
performed by:

e copying the file with the .jpg extension in the folder named media within the ZIP container;

e adding a group of elements in the document.xml file (it contains the XML markup that defines the
contents of the document) in order to describe the insertion methods within the page;

e adding, in several files of the relationships, some XML lines which declare the use of an image.

The OOXML format gives new opportunities to the community, as stated by Microsoft [3]. In fact with
the new standard:

e it is possible to show just the text of the document. If the file is a Word document, for example,
only the file document.xml will be analyzed without necessarily opening all the files which contain
the remaining information of the document;

o the files are compressed, and consequently are short and easy to manage;

e it is simpler to scan for viruses or malicious contents thanks to its textual format instead of the old
binary one;

e the new format does not allow to have macro inside it, thus guaranteeing a satisfactory level of
security;

61



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

e if some of the files in the ZIP container are damaged, the integrity of the entire document could be

preserved, and in some cases the main document could be reconstructed starting from the remaining
“untouched” files.

MS-Office 2010, also known as Office 14, maintains formats and interfaces that are similar to the
2007 version. The substantial difference between the two suites is that MS-Office 2010 is much more
web-oriented than the previous one. The new suite, for example, sends the user an alert message when
transmitting sensitive information via e-mail. It is also able to translate documents and deal with different
languages, as well as transform presentations into clips. It makes possible to present a PowerPoint
“slideshow” to users connected on the Internet. In [13] Microsoft analyzes, describing some of their
characteristics, all the new features introduced in the new version (Office 14), highlighting the updated
parts with respect to the old one.

The management flexibility offered by the new OOXML format has obvious implications when
dealing with security. On one hand, the clear-text offers the seeming impossibility to hide information.
While, on the other, it offers the possibility to malicious parties to read its content and eventually freely
manipulate it. It is also well-known that MS-Office files contain data that can reveal unwanted personal
information, such as people who have collaborated in the writing of the document, network parameters, as
well as devices on which it has been edited. In current literature, there are several papers which describe
how to extract and reconstruct several different types of information from such documents. Castiglione et
al. [14]] introduced a steganography system which can be applied to all versions before MS-Office 2007.
Furthermore, authors analyzed the information leakage [15]] issue raised by MS-Office 2007 documents.

The feature called Document Inspector has been introduced by Microsoft to enhance the security and
privacy of the Office documents. It is accessible from the menu “File” -> “Info” -> “Check for Issues”
(see Fig.[2). The Document Inspector makes it possible to find and remove, quickly, personal, sensitive
and hidden information (see Fig. [3). More details on the Document Inspector can be found in [16].

examplel.docx [Compatibility Mode] - Microsoft Word (Trial) o @ X

Home  Inset  Pagelayout  References  Mailings  Review  View o
(= save "
Zen Information about examplel

ave As

e C:\Documents and Settings\Administrator\Desktop\rino\rino_stegaoffice\documenti_test2\exa...
25 Open
[ Close

Compatibility Mode
(W} E Some new features are disabled to prevent problems when working with
previous versions of Office. Converting this file will enable these features, but

Convert may result in layout changes. Properties
Recent ~

New

Permissions

Print ‘_QNJ Anyone can open, copy, and change any part of this document
[
Save & Send rotect
Document »
Help
) Oetice Prepare for Sharing
ﬂ Before sharing this file, be aware that it contains:
Exit Content that cannot be checked for accessibility issues because of the
C]"““ for current file type
e A setting that automatically removes properties and personal
- Inspect Document
=1/ Check the document for hidden properties td in your file

or personal information. Last Modified By

Check Accessibility

N
7@ Check the document for content that people
with disabilities might find difficult to read.

] 3 Check Compatibility
2] Check for features not supported by earlier

versions of Word.

f this file.

Figure 2: How to find the Document Inspector feature inside Microsoft Word.

62



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

@ = e = e

.Hu Home  Insert  Pagelayout  References  Mailings  Review  View
Il save

B saveas

(-SR]

Information about examplel

C:\Documents and Settings\Administrator\Desktop\rino\rino_stegaoffice\documenti_test2\exa...

Document Inspector. @@

25 open

o
[a- Close To check the document for the selected content, dlick Inspect.
(w] :
[< its, R Versions, and
Inspects the document for comments, versions, revision marks, and ink annotations.
facent Convert
Document Properties and Personal Information
New Inspects for hidden metadata or personal information saved with the document.
Print a P Custom XML Data
. Inspects for custom XML data stored with this document.
P
Save & Send Docf:::“
Headers, Footers, and Watermarks
Help Inspects the document for information in headers, footers, and watermarks. ates
ed
] Options Invisible Content
j Inspects the document for objects that are not visible because they have been formatted as
Exit invisble. This does not indude objects that are covered by other objects. pd
Check for
Issues ~
Hidden Text eople
Inspects the document for text that has been formatted as hidden.
Jocuments
C J !
Manage Properties

Versions ~

-

Figure 3: What can be found and removed with the Document Inspector.

3 Information Hiding in MS-Office Files

The Information Hiding is a field of the Information Security. This term refers to several techniques used
to hide information in different types of “digital containers” (transmission channels, documents, audio,
video, programs, images, etc). The reasons for hiding information can be different, for example to put
a digital seal to a digital content that can not be removed or altered (digital watermarking) or to create
“covert channel” where it is difficult to derive details about the transceiver. An important discipline of
the Information Hiding is the Steganography. While Cryptography studies how to protect the content
of a message, Steganography deals with the methodologies that can be used to hide the presence of the
hidden message. The origin of the word Steganography is from the Greek octeyavg and ypa@io and
that literally it means “hidden writing”. Currently it is interpreted like the possibility to hide information
in other information. Generally, a model that hide data in other data can be described as follows. The data
to be hidden is the message that need to be transmitted in a secure way. Usually this information is hidden
into an “innocuous message” called cover text, cover image or cover audio, depending on if produces a
stego-text or a stego-object. A stego-key is used to control the process to hide data as well as to limit the
identification and the recovery of information to authorized users. The authorized users are those that
know the right process for obtaining the value of the key. Attacks to the Steganography usually focus on
finding the presence of an hidden message or on identifying the content of an hidden message.

The aim of the Steganography is to establish an hidden communication channel between two subjects.
Petitcolas, in [[17]], defined a stegosystem like “one where an opponent who understands the system, but
does not know the key, can obtain no evidence (or even grounds for suspicion) that a communication has
taken place”.

Considering the classification of Steganography proposed by Bauer [18] and depicted in Figure ] in
the following, the proposed methodologies are placed in the right category.

Bauer classifies Steganography in two categories: Linguistic steganography and Technical steganogra-

63



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

[ Information Hiding ]

[ Covert channels ] [Steganography] Anonymity ] [ Copyright marking ]

I_I—I

Technical Robust Fragile
steganography copyright marking watermarking
[ Open codes ] [ Fingerprinting ] [Watermarklng]

Visual Text Jargon Covered Impercetible Visible
Semagrams Semagrams code ciphers watermarking watermarking

l—;l

Null Grille
cipher cipher

Figure 4: Classification of Information Hiding adapted from Bauer.

Linguistic
steganography

phy. The Linguistic steganography conceals the message in the carrier by means of not obvious methods
while Technical steganography uses scientific methodologies in order to hide the information. The first
technique is further divided into Semagrams and Open Codes. With the Semagrams, the information is
usually hidden by using symbols and signs. The Visual Semagram uses innocent-looking or everyday
physical objects to communicate a message (for example, a small paint or disposition of elements on a
desk). In the Text Semagram the message is concealed exploiting the different ways of visualization of the
data (for example a “thin” modification of the font or the dimension of the character, the addition of extra
spaces, etc). The Open Codes technique differs from the Semagrams because it hides the information
through “legitimate carrier message” in the way that the presence of any information does not introduce
any suspicion. Usually the “carrier message” is called overt communication while the hidden message is
the covert communication. This category is classified in:

e Jargon code, as suggests the name, is the use of a language understood by a limited group of people.
The Jargon code includes the “warchalking”, that is the use of symbols to indicate the presence
of a wireless network. This terminology is mostly used in the wild and is composed of innocent
conversation that hide special meanings, having a means only to those interlocutors who share some
common interests. A subset of the Jargon codes are the cue codes ciphers just hides a message on
the carrier. The hidden information can be recovered by anyone who knows the secret used for the
concealement. The Grille cipher needs the use of template. The template is applied on the carrier
message, in a way that only the characters that compose the secret message are visible while the
other are obfuscated. In the Null cipher the message is hidden using a set of rules established among
the users. For example, to read every seven words or to consider the second character of each word.

Figure [5| shows the collocation of the different techniques proposed in this paper, according to the
Bauer classification. The methodology of “Data Hiding by Office Macro” is not present because it can be

64



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Linguistic
steganography

—L

Open
Semagrams
codes
Covered
ciphers

S E—

Null cipher

visual | Test [ )
isua est Jargon code Grill cipher
Semagrams Semagrams

Different
compression
algotihm of ZIP

Zero dimension
image

Revision identifier
value

|\ J o J

Figure 5: Classification of Information Hiding for MS-Office documents.

included in at least three categories, the Test Semagram, the Null cipher and the Jargon code.

The methodologies analyzed in this article have been classified as “Steganography” techniques. In fact,
the methodologies are not Anonymity techniques, because they do not hide the sender and the receiver
identity. For this reason, having the different version of the cover document, it is possible to identify who
inserted the hidden data in the document.

The proposed methodologies cannot be considered Covert channels because they do not satisfy the
definition of Lampson. Covert channels have been defined by Lampson, in the context of multilevel
secure systems, as communication paths that were neither designed nor intended to transfer information
at all. At last, the methodologies are not classified as Watermarking because they do not satisfy the
second and third attribute presented in [[19]. Watermarking is distinguished from other techniques in
three important aspects. First, watermarks are imperceptible. Unlike bar codes, they cannot be detracted
from the aesthetics of an image. Second, watermarks are inseparable from the “works” in which they are
embedded. Unlike header fields, they are not removed when the “works” containing a watermark are
displayed or converted into other file formats. Finally, watermarks undergo the same transformations of
the “works”. This means that it is possible, sometimes, to learn something about those transformations
by looking at the resulting watermarked objects. These three attributes make watermarking invaluable
for certain applications. Indeed, the hidden information is not always “inseparable from the work”, for
example, many do not resist to save operations or can be removed without damaging the file, and not
always “undergo the same transformations” of the container file (usually transformations produce the loss
of the hidden data).

4 Data Hiding by Different Compression Algorithm of ZIP

Taking advantage of the characteristic that OOXML standard produces compressed files, it is possible to
hide information inside a ZIP structure without taking into account that the same file will be interpreted
by MS-Office as a document produced by its own application. The ZIP format is a data compression and
archive format. Data compression is carried out using the DeflatS format [[20], which is set as default, with
it being possible to set a different compression algorithm. For example, by using WinZip (ver. 14.5 with

65



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

the command-line add-on ver. 3.2) it is possible to choose one of the compression algorithm indicated in
Table [T}

Table 1: Compression options in the ZIP format.

Algorithm Acronym | Option
maximum (PPMd) PPDM ep
maximum (LZMA) LZMA el
maximum (bzip2) BZIPPED eb
maximum (enhanced deflate) EnhDefl ee
maximum (portable) DeflateX ex
normal DeflateN en
fast DeflateF ef
super fast DeflateS es
best method for each file (based on the file type) ez
no compression Stored el

Therefore, by inserting in the command wzzip [options] zipfile [Q@listafile] [files...]
one of the options indicated in Table[I] the desired algorithm compression will be applied. It is worth
noting that, in a container ZIP, all the files contained can be compressed with a different algorithm. In the
MS-Office files, that are ZIP containers, it is possible to set various compression algorithms.

Not all the algorithms listed in Table[T]are correctly interpreted by MS-Office. In fact, after some tests,
it has been possible to ascertain that only the 5 algorithms present in Table [2|are supported by MS-Office.
Initially, the tests has been performed on a .docx file, which has been compressed by using the different
compression algorithms. It as been determined that both MS-Office 2007 and MS-Office 2010 do not
correctly handle file compressed with the following compression switches: eb, ee, el, ep, ez. In such a
case, it is shown an error message stating that the ZIP format is not supported. MS-Office uses by default
the compression algorithm named DeflateS.

Table 2: Association characters-algorithms.

Algorithm | Option | Char
DeflatF ef 0
DeflatN en 1
DeflatX ex 2
DeflateS es 3
Stored e0 4

The proposed steganographic technique considers different compression algorithms as different parameters
of source encoding. More precisely:

1. hidden data is codified with an alphabet of 5 elements, the 5 different values that indicate the
compression algorithm used;

2. the codes obtained through the previous point are hidden in ZIP files associating a character to
every file present in the container;

3. the compression algorithm applied to the single file corresponds to the value of the character to be
hidden.

Consider the binary string (1010101101111111001000100001 ), to be hidden in a Word document
which has just been created and has no characters. This document is made up of 12 files, as listed in the
first column of Table 3l
The files are listed in alphabetical order in relation to their “absolute” name (comprehensive of the
path). Thus, there is an univocal sequence on which it codifies or decodes. In order to hide the binary

66



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Table 3: Decoding table.

File Algorithm | Char
[Contentyypes).xml DeflatS 3
\docProps\app.xml DeflatS 3
\docProps\core.xml DeflatX 2
\word\document .xml DeflatF 0
\word\ fontTable.xml DeflatN 1
\word\settings.xml DeflatS 3
\word\styles.xml Stored 4
\word\stylesWithE f fects.xml DeflatS 3
\word\webSettings.xml DeflatX 2
\word\theme\themel.xml Stored 4
\word\_rels\document.xml.rels DeflatN 1
\_rels\.rels DeflatS 3

string, it has to be first converted into a number in base 5. The base 5 representation of the number
(1010101101111111001000100001)3 is a string of 12 numbers: (332013432413)s. It is assumed that the
values indicated in Table 2] can be associated to the various compression algorithms. In order to obtain
the stego-text, every file will be simply compressed with the corresponding algorithm associated to the
character to be hidden (see Table [3)). O
If the MS-Office file contains M files, the proposed technique allows to hide

log, SM =M -log, 5~ M -2.32

bits of information. M is at least 12, but usually is greater.
Algorithms [1| and 2| (see Appendix show how to encode and decode information using the
methodology of different compression algorithm of ZIP.

S Data Hiding by Office Macro

A macro is a group of commands which make it possible to obtain a series of operations with a single
command [21]]. Thus, a macro is a simple recording of sequence of commands which are already available
in a software. For this reason, there would seem no need for a programming language. However, macro
has acquired a programming language that, in the event of MS-Office, is Visual Basic. The new format of
MS-Office, as previously stated, in order to guarantee a greater level of security does not allow macro
to be saved inside the file. When using macro in documents, it is necessary to enable this function as
well as modify the extension of the name file, which will be: .docm, .xIsm, pptm, etc.. The structure of
the files with macro (e.g. example.docm) and without (e.g. example.docx) is different. This is evident
when carrying out a simple test: changing the extension of the file from .docm to .docx and displaying the
document, the system gives an error message indicating that the format is not the one expected. However,
MS-Office can open the file, recognizing it as a document with macro and processing it as a normal .docm
file.

Thus, it is possible to consider using MS-Office macro as a channel to transmit hidden information. In
fact, macro can be seen as a function:

F(x) :x € X, where X is the set of the input of macro.

Therefore, it is possible to hide information:

e in the description of the function F(x);

67



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

e in the value associated to the function F(k), where k € K and K C X is the set of stego-key that are
highly unusual inputs.

In the first case, the information to be hidden will be stored inside of the macro. For example, it is
possible to insert the data to be hidden as a comment to the code or to assign it as a value assigned to a
variable.

In the second case, as consequence of specific input, macro has a behavior that generates an output
that renders the hidden data visible. An example is a macro, in a Word document, that given a word as
input, searches for it in the text and highlights it in yellow. There is also another routine in the code,
that can only be executed if the searched word is the stego-key, than highlights several characters in the
document in yellow. These characters, read in sequence, are the hidden information. In this case:

e the macro will be recognized as reliable by a user as it carries out the task for which it has been
realized;

e inside the code, the characters of the hidden message will not be explicitly present but only the
coordinates of the corresponding position in the document;

e only who has stego-key will know the secret.

This methodology does not place limits on the amount of information that can be hidden. In fact, a
macro does not pre-exist but is created or modified according to the data to be hidden.

6 Data Hiding by Zero Dimension Image

The methodology proposed in this Section uses an OLE-object (of type “image”), inserted into a MS-
Office document in order to contain the information to be hidden. This object, which is totally compatible
with the OOXML standard, will:

e be located in the upper-left position and placed in any of the pages that make up the document;
e have both the height and width equal to 0;
e be placed “behind the text”.

These properties will make it possible to hide the image during the display or modification of the
document. It is worth noting that the file associated to OLE-object, even if declared as “image”, can in
reality be any type of file (text, audio, etc.) with a appropriate extension (.jpg, .bmp, etc.). Therefore, this
methodology can be used in order to hide data of a different nature, and is not only limited to images. The
identification of the OLE-object and the decoding of the hidden text make it more difficult to associate
files of reduced dimensions and encrypt the message to be hidden.

A simple and fast method to hide information using this methodology is the following:

rename the file which contains the hidden message with an extension compatible with an image
type;

insert the image introduced in the previous step into the Word, Excel or PowerPoint document;

modify the layout of the text related to the image, setting the “Behind text style”

move the image to the upper-left position;

68



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

e from the menu “Dimension and position” set both the height and width of the image to 0;

The folder where to copy the OLE-object associated to the file varies according to the type of MS-
Office document worked on, with it being: word\media for Word files, xI\media for Excel files, and
ppt\media for PowerPoint files.

Another way of applying such methodology is to work directly on the XML files. In this case, it is
necessary — besides copying the file containing the message to hide in the proper directory (of the ZIP
container) — to insert in the XML files the elements to:

e relate to the image;

e declare the presence of the image;

e set the position of the image on the upper-left;
e set the image placed behind the text;

e set the dimensions of the image equal to zero.

In order to set the dimensions of the image to zero, the XML extent attribute will have to be worked
on (see pp. 3173-3176 in the ECMA-376 specifications [[10]). This element, in fact, defines the dimension
of the bounding box that contains the image. Therefore, reducing the height and width of the bounding
box to zero, will obtain the desired effect. Two examples of the extent element, respectively for Word
and Excel files, are shown:

<wp:extent cx="0" cy="0" />
<a:ext cx="0" cy="0" />

Where attributes cx and cy are respectively, the width and height of the bounding box. In the Excel
files, among the elements used to describe the image inserted in the spreadsheet, there are:

<xdr:from>
<xdr:col>0</xdr:col>
<xdr:colOff>9525</xdr:colOff>
<xdr:row>0</xdr:row>
<xdr:rowOff>28575</xdr:rowOff>
</xdr:from>
<xdr:to>
<xdr:col>0</xdr:col>
<xdr:colOff>161925</xdr:colOff>
<xdr:row>0</xdr:row>
<xdr:rowOff>28575</xdr:rowOff>
</xdr:to>

These elements identify the box of cells that contains the image(see pp. 3516-3517, 3523-3524 and
3532-3533 of the ECMA specifications [[10]]). The coordinates (line, column) are relative to the two cells
situated respectively in the upper-left and lower-right. Therefore, in order to reduce the dimensions of the
image to zero, it is sufficient to reduce the box of cells that contains it (<xdr:col>0 and <xdr: row>0)
to zero. Thus, there is no need to place the image in the upper-left position due to it already being in a not
selectable position: the cell with the coordinates (0,0).

In order to set the image in the upper-left position of the page, for Word files, it will be necessary to
operate on the position element (see pp. 3480-3483 of the ECMA specifications [10]). This element
indicates the position of the image in respect to a part of the document (page, column, paragraph).
Therefore, placing the image at a distance 0 of the “page” will obtain the desired effect. An example of
how the block of elements on which the modification operates, is the following:

69



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

<wp:positionH relativeFrom="column">
<wp:posOffset>1685925</ wp:posOffset>
<wp:positionV relativeFrom="page">

<wp:posOffset>>967105</ wp:posOffset>

The attribute relativeFrom indicates the part of the document in relation to which the position

will be calculated while posOffset is the position. Therefore, upon placing the image on the left, the
following elements will be modified as:

<wp:positionH relativeFrom="page">
<wp:posOffset>0</wp:posOffset>
<wp:positionV relativeFrom="page">
<wp:posOffset>>0</wp:posOffset>

In order to place the image in the upper-left position, the <a:off x="0" y="0"/> element cannot
be used due to the position indicated by the x and y coordinates referring to the paragraph and not to the
page.

There is a problem for PowerPoint files, where the image, also if reduced to dimension zero and
placed in the upper-left position, could still be selected by using the “Select Area” function. Moreover, it
is not possible to insert an image outside a slide. In fact, the image would be interpreted as an anomaly by
the Document Inspector. This methodology, therefore, is not really suitable for PowerPoint files.

Algorithms [3] and [ (see Appendix show how to encode and decode information using the
methodology of Zero Dimension Image.

7 Data Hiding by the Revision Identifier Value

Another proposed method of hiding information in MS-Office documents, which is only applicable to
Word files, is to use the value of several attributes that are in XML. It is the revision identifier rsid, a
sequence of 8 characters which specifies a unique identifier used to track the editing session. An editing
session is defined as the period of editing which takes place between any two subsequent save actions.
The rsid, as an attribute of an XML element, gives information on the part of code contained in the same
element. The types of revision identifier, usable in the OOXML standard, are listed in the specifications
of the ECMA-376. These attributes, defined as the ST_LongHexNumber simple type, are strings of 8
hexadecimal characters:

(xox1x2x3x4x5%6X7) : x; € {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E F}

All the revision identifier attributes, present with the same value in a document, indicate that the code in
the element has been modified during the same editing session.

An example element which contains 3 rsid attributes is:
<w:p w:rsidR="000E634E" w:rsidRDefault="008C3D74" w:rsidP="00463DF8">

It is worth noting that there are three sequences of 8 characters, that represent the unique identifier
associated to the attributes: rsidR, rsidRDefault and rsidP (see pp. 243-244 of the ECMA-376 specifica-
tions [10]).

The methodology proposed in this section consists of replacing the values of the rsid attributes with

the data to be hidden, codified in hexadecimal. Thus, if 7 is the number of occurrences of these attributes
in the MS-Office files, the maximum number of bits that can be hidden will be:

log, 1678 =32.T

70



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

due to every attribute being composed of 8 hexadecimal characters. If the information to be hidden
exceeds the maximum number of bits that can be contained in the MS-Office document, it is possible to
add to the XML file further elements with rsid attributes. Furthermore, one more trick is required to avoid
the detection of hidden data by a stego-analysys inspection. MS-Office records in the file setting.xml
all the rsid values that has been used in the various versions of the file document . xm1. To perform such
an activity, MS-Office uses the XML element <w:rsid w:val="002A31DF">. Consequently, when, to
hide information, it is used the methodology presented in this section, after having modified the rsid values
in the file document . xm1, it is necessary to insert the same values even in the file setting.xml. In fact,
the presence of rsid values in the file document . xm1 which are not present in the file setting.xml it
is a strange situation that could raise suspicion.

Among the various functionalities available in MS-Office, there is the possibility to track the changes
of a document. By using such feature, MS-Office keeps track of all the modifications performed in a
document (deleted, inserted or modified text), of the date when they have been made and of the user who
has carried out such modifications. Those information, even though can be partially reconstructed by
the analysis of the rsids, are traced by using two XML elements. Such elements, delimited by a pair of
start-tag and end-tag, are different if used to track a deletion (with the tag <w:del ...> </w:del>)or
an insertion (with the tag <w:ins...> </w:ins>).
This element has the following 3 attributes: identification code (id), author who modified the document
(author) as well as time and date in which the change (date) occurred (this is an optional attribute).
Consequently, all the modifications performed by the same author within the same editing session will be
placed in the XML file between the start-tag and end-tag of the “change-tracking” element.

For example, if the user PCCLIENT would have deleted the text “one” at 09:23:00 GMT of October
11, 2010, the code excerpt will be like:

<w:del w:id="0" w:author="PCCLIENT" w:date="2010—10—11T09:23:00Z">
<w:r w:rsidRPr="00111111" w:rsidDel="00333333">

<w:rPr>
<w:lang w:val="en-US"/>
</w:rPr>
<w:delText xml:space="preserve">one</w:delText>
</w:ir>
</w:del>

That being stated, the methodology presented in this Section will continue to work even though the change
tracking is activated in MS-Office. Enabling the change tracking means that personal information is
inserted into the document. Therefore, the Document Inspector signals the presence of the change tracking
as an anomaly and proceeds to eliminate this information from the document.

As an example, it can be considered that the document under scrutiny has 19 occurrences of the rsid
characters:

<w:p w:rsidR="00463DF8" w:rsidRDefault="00463DF8" w:rsidP="00463DF8">

<w:r w:rsidRPr="0074047B">

<w:p w:rsidR="00463DF8" w:rsidRDefault="00463DF8" w:rsidP="00463DF8">

<w:r w:rsidRPr="008C3D74">

<w:r w:rsidRPr="0074047B">

<w:p w:rsidR="00463DF8" w:rsidRPr="008C3D74" w:rsidRDefault="00463DF8" w:rsidP="00463DF8">

<w:p w:rsidR="000E634E" w:rsidRPr="00463DF8" w:rsidRDefault="00463DF8">
<w:sectPr w:rsidR="000E634E" w:rsidRPr="00463DF8" w:rsidSect="009B2A88">

Thus, it has 152 (19x8) characters to store information (see Table [4)).

Assuming that the message “this message is hidden in a word document” (41 characters) is to be
hidden, using a standard ASCII code. The first step is to replace every character of the message with the 2
characters that are the relative representation of the ASCII code (see Table[5).

71



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Table 4: Sequence of rsid values.
00 46 3D F8 | 00 46 3D F8 | 00 46 3D F8 | 00 74 04 7B | 00 46 3D F8
00 46 3D F8 | 00 46 3D F8 | 00 8C 3D 74 | 00 74 04 7B | 00 46 3D F8
00 8C 3D 74 | 00 46 3D F8 | 00 46 3D F8 | 00 OE 63 4E | 00 46 3D F8
00 46 3D F8 | 00 OE 63 4F | 00 46 3D F8 | 00 9B 2A 88

Table 5: Coded message.

t h i K m e s K a g e i K h i d d
74 68 69 73 20 6D 65 73 73 61 67 65 20 69 73 20 68 69 64 64
e n i n a w 0 r d d 0 c u m e

65 6E 20 69 | 6E 20 61 20 | 77 6F 72 64 | 20 64 6F 63 | 75 6D 65 6E

74

A sequence of 82 characters is obtained, with a further 70 symbols “0” attached. Thus, a string of 152
symbols is obtained (see Table[6)).

Finally it will be enough to replace, in an XML file, the string of symbols in Table [f]to the values of
the rsid attributes in order to complete the steganography process.

<w:p w:rsidR="74686973" w:rsidRDefault="206D6573" w:rsidP="73616765">

<w:r w:rsidRPr="20697320">

<w:p w:rsidR="68696464" w:rsidRDefault="656E2069" w:rsidP="6E206120">

<w:r w:rsidRPr="776F7264">

<w:r w:rsidRPr="20646F63">

<w:p w:rsidR="756D656E" w:rsidRPr="74000000" w:rsidRDefault="00000000" w:rsidP="00000000">

<w:p w:rsidR="00000000" w:rsidRPr="00000000" w:rsidRDefault="00000000">
<w:sectPr w:rsidR="00000000" w:rsidRPr="00000000" w:rsidSect="00000000">

Obviously the message to be hidden would be preferably encrypted before embedding (see Section [g)).

O

Algorithms [5|and [6] (see Appendix [A]) show how to encode and decode a secret message using the
methodology analyzed in this Section.

8 Methodologies Compared

The Document Inspector, as indicated in Section [2] is the tool supplied by Microsoft, which is used to
search for and remove any eventual information hidden in MS-Office files. Thus, for an Information Hiding
methodology to be considered good, it must pass the controls of this tool. All four methodologies presented
in this paper resist the analysis of the Document Inspector. In addition to controlling and removing
hidden information with the Document Inspector, MS-Office also carries out a type of optimization and
normalization of the ZIP container every time the file is saved. These operations consist of eliminating
everything that it is not recognized as valid for the application (e.g. files attached without a link) as well
as reorganizing the elements that make up the XML code according to its own outline. These particular
aspects render the techniques presented in Sections {] and [7] vulnerable. In fact, as a result of a save action,
MS-Office compresses all the present files in the ZIP container using the default algorithm (DeflateS)
and assigns new values to the rsid attributes. Therefore, in order to avoid that the hidden information

Table 6: Sequence of rsid values with hidden data.
74 68 69 73 | 20 6D 65 73 | 73 61 67 65| 20 69 173 20 | 68 69 64 64
65 6E 20 69 | 6E 20 61 20 | 77 6F 72 64 | 20 64 6F 63 | 75 6D 65 6E
74 00 00 00|00 00 00 00]00 00 00 00|00 00 00 00|00 00 00 00
00 00 00 00]00 00 00 00|00 00 00 00]00 00 00 00

72



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

be removed as a result of an “involuntary” save action (e.g. automatic saving), it is worthwhile marking
the document as the “final version”. The user is therefore dissuaded from making any modifications
unless specifically authorized. It is impossible to make any general considerations about the overhead
introduced by the hiding methods introduced in this paper. However, there is a need to examine the single
methodologies. In the event discussed in Section[d] the overhead is a function of the compression ratio
applied for the different algorithms. Therefore, the dimension of the file can either increase, remain
unchanged or diminish. On the other hand, the methodology presented in Section [7/has a null overhead,
in the event in which the text to be hidden is less than the maximum number of bits that can be contained
in the document, with it being a function of the parts inserted in the XML files, in the other cases. The
overhead introduced by the solution proposed in Section [6]is a function of two values. These values
are the dimension of the attached file image, that contains the hidden data, plus the dimension of the
elements added in the XML files and required in order to insert the image with the characteristics described
in Section[6] Finally, in the case discussed in Section [} the overhead introduced is a function of the
dimension of the macro applied.

The four methodologies discussed in this paper can all be applied simultaneously to the same document.
The amount of information that can therefore be hidden in the file will be greater than when using a single
technique. Finally, in order to guarantee ulterior data confidentiality, before proceeding to the phase of
embedding all the data to be hidden, it should be encrypted using a symmetrical key algorithm.

9 Experiments

In order to verify the real amount of information that can be hidden by using the proposed techniques,
several tests have been done on a set of 53.841 files composed of Word, Excel and PowerPoint documents
(see Fig.[6). The files have been downloaded from the Internet by different domains, as shown in Fig. [7]

Figure 6: Distribution of the test files used for the experiments.

The amount of files analyzed in this section, classified by type and domain, is shown in Tab.[7]

For the experiments the authors have not been considered all the presented methodologies because
in some cases it is not possible, starting from the properties of MS-Office files, to establish the amount
of information that can be used to hide information. In fact, when using the Zero Dimension Image
methodology, the amount of secret information is function of the size of the added “image” and of the type
of steganography that is applied to it. Furthermore, the amount of information that can be concealed with
the Office Macro methodology depends on the type and quantity of the added instructions in the macro.

As a consequence, the experiments have been conducted only on the Different Compression Algorithm
of ZIP and on the Revision Identifier Value methodologies. In order to establish the amount of information

73



Hiding Information into OOXML Documents: New Steganographic Perspectives

uk
5%

ae
o at
4% 4%

u
4% o%

ca
ru ’ %
5% ch
org ‘

5%
nl ,
2o, [

de
5%
net p
5% edu
5%
kr
4% . es
Jp
5% fr

4%
it .
A:% ir int in 4%
4% 3% 3%

Figure 7: Test files distribution based on the domain of download.

Table 7: Files per domain.

Domain docx pptx xlsx Total
ae 884 669 442 2.995
at 849 685 484 2.018
au 932 807 749 2.488
ca 888 939 746 2.573
ch 881 813 524 2218

com 886 900 810 2.596
de 907 862 666 2435
edu 969 973 913 2.855
es 926 879 404 2.209
fr 883 852 406 2.141
in 752 724 351 2.827
int 797 466 445 2.708
ir 903 749 394 2.046
it 915 845 453 2213
ip 842 851 823 2.516
kr 844 846 676 2.366
net 925 745 842 2.512
nl 914 892 553 2.359
org 902 851 909 2.662
ru 937 841 861 2.639
se 935 794 665 2.394
th 888 757 900 2.545
uk 877 940 709 2.526
Total 20.436  28.680 24.725 | 53.841

Castiglione et al.

that can be hidden, the number of rsid attributes within the XML files as well as the number of files
present in the ZIP container, have been counted. The result of such operations and the properties of the

considered documents are shown in Table[8]

As shown in Section[7] the number of bits that can be hidden by using the Revision Identifier Value
methodology is 32 times the number of rsid attributes. In addition, as shown in Section ] the amount
of bits that can be concealed by using Different Compression Algorithm of ZIP methodology is 2.32

74



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Table 8: Statistics on the data set.
Word PowerPoint Excel

Avg Min Max Avg Min Max Avg Min Max
Number of files 20.436  20.436 20.436 18.680 18.680 18.680 14.725 14.725 14.725
Dimension extracted files | 777.234  12.560 287.817.186 | 4.009.739  79.100  287.802.760 | 943.787  15.048 342.234.161
Dimension ZIP file 287.134  4.035 16.607.100 2.320.961  24.983 59.011.334 120.874 6.333 27.721.494
% of compression 38,11% 0,91% 99,71% 58,75% 0,95% 99,65% 20,27%  2,18% 99,51%
Dimension XML file 207.256 0 85.930.158 311.197 0 25.545.191 365.378 666 170.994.712
Number of rsid attributes 1.497 0 586.594 0 0 0 0 0 0
Number of files in ZIP 20 8 1.839 146 18 2.387 21 9 2.686

times the number of files present in a ZIP container. At the end, the percentage of data concealment
(%) is calculated by dividing the amount of information hidden by the dimension of the ZIP container
(MS-Office file). The results are shown in Tab.[9]

Table 9: Amount of information (in bytes) and the percentage that can be hidden using the different
metodologies.

Word files PowerPoint files Excel files
Revision Different Revision Different Revision Different
Identifier Compression Identifier Compression Identifier Compression
Value Algorithm of ZIP Value Algorithm of ZIP Value Algorithm of ZIP
Amount Avg 5.990 6 0 42 0 6
Hidden Min 0 2 0 5 0 3
Bytes Max | 2.346.376 533 0 692 0 779
Percentage Avg 6,74% 0,01% 0,00% 0,01% 0,00% 0,02%
Information | Min 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Hiding Max | 355,21% 0,08% 0,00% 0,05% 0,00% 0,08%

The experiments shown that the methodology Different Compression Algorithm of ZIP gives a
contribution next to zero (usually only a few bytes are available) while the Revision Identifier Value one is
the most advantageous but can be applied only to Word files. In conclusion, to maximize the amount of
information that can be hidden within each kind of MS-Office files, all the proposed techniques should be
applied together.

10 Conclusions

Four new methods for hiding data in MS-Office documents have been presented in this paper. The
common feature is that they resist the Document Inspector analysis, which could not detect any hidden
information. The first two techniques, which use different compression algorithms as well as revision
identifier values, exploit particular features of the OOXML standard. These techniques have a null
overhead, if the information to be hidden does not need to add any other modules. However, they do
not resist save actions, in which case the hidden data is removed from the file. Whereas, the other two
methodologies, which use either a zero dimension image or macro, are based on the characteristics of the
MS-Office suite and are, therefore, not constrained to the OOXML format. Unlike the previous two, they
resist save actions but have an overhead that depends on the sequence elements size which are inserted
into the files.

The proposed techniques can be used in several scenarios where there is need of a secure communica-
tion channel to exchange information in a private manner. Due to the embedding facilities of the proposed
techniques, the quantity of information that can be hidden is very short and for that reason the main usage
of the presented methodologies is to exchange very short information such as passwords, pass-phrases, or
short text. Furthermore, the proposed techniques can be combined in order to extend the overall quantity
of data that can be hidden in a single Office file. It is important to remember that the secret information to

75



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

be embedded have to be protected in some way, for example by using some cryptographic means in order
to avoid eavesdropping by a malicious party.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

A. Castiglione, B. D’ Alessio, A. D. Santis, and F. Palmieri, “New steganographic techniques for the ooxml file
format,” in Proc. of MURPBES 2011, Vienna, Austria, LNCS, vol. 6908. Springer-Verlag, August 2011, pp.
344-358.

Microsoft Press Release, “Microsoft office 2010 now available for consumers worldwide,” http://www|
microsoft.com/presspass/press/2010/jun10/06-152010officelaunchpr.mspx, visited March 2011.

M. C. Frank Rice, “Microsoft MSDN. Introducing the Office (2007) Open XML File Formats,” http://msdn|
microsoft.com/it-it/library/aa338205.aspx, May 2006.

Z. Hao-ran, H. Liu-sheng, Y. Yun, and M. Peng, “A new steganography method via combination in powerpoint
files,” in Proc. of 2010 International Conference on Computer Application and System Modeling (ICCASM’10),
Taiyuan, China, vol. 2. 1EEE, October 2010, pp. V2-62—-V2-66.

M.-Q. Jing, W.-C. Yang, and L.-H. Chen, “A new steganography method via various animation timing effects

in powerpoint files,” in Proc. of the 2009 International Conference on Machine Learning and Cybernetics,
Baoding, China. 1EEE, July 2009, pp. 2840-2845.

[.-C. Lin and P.-K. Hsu, “A data hiding scheme on word documents using multiple-base notation system,” in
Proc. of the 6th International Conference on Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP’10), Darmstadt, Germany. 1EEE, October 2010, pp. 31-33.

T.-Y. Liu and W.-H. Tsai, “A new steganographic method for data hiding in microsoft word documents by
a change tracking technique,” IEEE Transactions on Information Forensics and Security, vol. 2, no. 1, pp.
24-30, 2007.

S. L. Garfinkel and J. J. Migletz, “New xml-based files implications for forensics,” IEEE Security & Privacy,
vol. 7, no. 2, pp. 38-44, 2009.

B. Park, J. Park, and S. Lee, “Data concealment and detection in microsoft office 2007 files,” Digital
Investigation, vol. 5, no. 3-4, pp. 104-114, 2009.

ECMA International, “Office Open XML File Formats - Part 1,” Standard ECMA-376, 2nd edition, December
2008, http://www.ecma-international.org/publications/standards/Ecma-376.htm.

Wikipedia, “ZIP (file format),” http://en. Wikipedia.org/wiki/ZIP_(file_format), visited March 2011.

M. C. Erika Ehrli, “Building server-side document generation solutions using the open xml object model,”
http://msdn.microsoft.com/en-us/library/bb735940%?28office.12%?29.aspx, August 2007.

Microsoft Corporation, “Compare office professional plus 2010 and the 2007 suite,” http://office.microsoft
com/en-us/professional-plus/professional-plus-version-comparison-FX101871482.aspx|, visited March 2011.
A. Castiglione, A. De Santis, and C. Soriente, “Taking advantages of a disadvantage: Digital forensics and
steganography using document metadata,” Journal of Systems and Software, vol. 80, no. 5, pp. 750-764, 2007.
S. Kiyomoto and K. M. Martin, “Model for a common notion of privacy leakage on public database,” Journal

of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 2, no. 1, pp. 50-62,
2011.

Microsoft Corporation, “Remove hidden data and personal informa-
tion from office documents,” http://office.microsoft.com/en-us/excel-help/
remove-hidden-data-and-personal-information-from-office-documents-HA010037593.aspx, visited
March 2011.

F. Petitcolas, R. Anderson, and M. Kuhn, “Information hiding-a survey,” Proceedings of the IEEE, vol. 87,
no. 7, pp. 1062—-1078, July 1999.

F. L. Bauer, Decrypted Secrets: Methods and Maxims of Cryptolog, 4rd ed. ~ Springer, 2007.

I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and Steganography.
Second Edition. Morgan Kaufmann Publishers is an imprint of Elsevier, 2008.

76


http://www.microsoft.com/presspass/press/2010/jun10/06-152010officelaunchpr.mspx
http://www.microsoft.com/presspass/press/2010/jun10/06-152010officelaunchpr.mspx
http://msdn.microsoft.com/it-it/library/aa338205.aspx
http://msdn.microsoft.com/it-it/library/aa338205.aspx
http://en.Wikipedia.org/wiki/ZIP_(file_format)
http://msdn.microsoft.com/en-us/library/bb735940%28office.12%29.aspx
http://office.microsoft.com/en-us/professional-plus/professional-plus-version-comparison-FX101871482.aspx
http://office.microsoft.com/en-us/professional-plus/professional-plus-version-comparison-FX101871482.aspx
http://office.microsoft.com/en-us/excel-help/remove-hidden-data-and-personal-information-from-office-documents-HA010037593.aspx
http://office.microsoft.com/en-us/excel-help/remove-hidden-data-and-personal-information-from-office-documents-HA010037593.aspx

Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

[20] P. Deutsch, “DEFLATE Compressed Data Format Specification version 1.3,” http://www.ietf.org/rfc/rfc1951)
txt, May 1996.

[21] MSDN Library, “Introduction to macros,” http://msdn.microsoft.com/en-us/library/bb220916.aspx|, visited
March 2011.

Aniello Castiglione joined the Dipartimento di Informatica ed Applicazioni “R. M.
Capocelli” of Universita di Salerno in February 2006. He received a degree in Computer
Science and his Ph.D. in Computer Science from the same university. He is a reviewer
for several international journals (Elsevier, Hindawi, IEEE, Springer) and he has
been a member of international conference committees. He is a Member of various
associations, including: IEEE (Institute of Electrical and Electronics Engineers), of

. ACM (Association for Computing Machinery), of IEEE Computer Society, of IEEE
Commumca’uons Society, of GRIN (Gruppo di Informatica) and of IISFA (International Information
System Forensics Association, Italian Chapter). He is a Fellow of FSF (Free Software Foundation) as
well as FSFE (Free Software Foundation Europe). For many years, he has been involved in forensic
investigations, collaborating with several Law Enforcement agencies as a consultant. His research interests
include Data Security, Communication Networks, Digital Forensics, Computer Forensics, Security and
Privacy, Security Standards and Cryptography.

Bonaventura D’Alessio received a degree in Computer Science from the University of
Salerno in 1994 and a Master’s degree in Intelligence and Security from the University
of Malta in 2004. From December 1997 to October 2000 he has been technical civil
servant of the Minister of Justice. Since 2000 he is an Officer in Permanent Service,
with a Technical Role in computer science, of the Carabinieri Force. He have currently
B the rank of Major. From November 2000 to August 2001 he attended the Formation
450 Course for Officers of the Technical-Logistic Role at the Carabinieri Officers” College
in Rome From September 2001 to March 2006 he was assistant chief, of the unit involved in the
management of systems and networks security, at the Carabinieri General Headquarters. From April 2006
to May 2010 he was the chief of the unit involved in the management of S.I. T.A. (Information System
for Environmental Conservation) of Carabinieri Environmental Care. He is currently a Ph.D. student
in Computer Science from the University of Salerno. His research interests include Communication
Networks, Data Security, Digital Forensics, Security and Privacy, Steganography, Digital Forensics.

Alfredo De Santis received a degree in Computer Science (cum laude) from the
Universita di Salerno in 1983. Since 1984, he has been with the Dipartimento di
Informatica ed Applicazioni of the Universita di Salerno. Since 1990 he is a Professor
of Computer Science. From November 1991 to October 1995 and from November
1998 to October 2001 he was the Chairman of the Dipartimento di Informatica ed
Applicazioni, Universita di Salerno. From November 1996 to October 2003 he was
the Chairman of the PhD Program in Computer Science at the Universita di Salerno.
From September 1987 to February 1990 he was a Visiting Scientist at IBM T. J. Watson Research
Center, Yorktown Heights, New York. He spent August 1994 at the International Computer Science
Institute (ICSI), Berkeley CA, USA, as a Visiting Scientist. From November 2009 he is in the Board
of Directors of Consortium GARR (the Italian Academic & Research Network). His research interests

77


http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt
http://msdn.microsoft.com/en-us/library/bb220916.aspx

Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

include Algorithms, Data Security, Cryptography, Information Forensics, Communication Networks,
Information Theory, and Data Compression.

Francesco Palmieri is an assistant professor at the Engineering Faculty of the Second
University of Napoli, Italy. His major research interests concern high performance and
evolutionary networking protocols and architectures, routing algorithms and network
security. Since 1989, he has worked for several international companies on nation-wide
networking-related projects and, from 1997 to 2010 he has been the Director of the
telecommunication and networking division of the Federico II University, in Napoli,
: L Italy. He has been closely involved with the development of the Internet in Italy as a
senior member of the Technical-Scientific Advisory Committee and of the CSIRT of the Italian NREN
GARR. He has published more that 70 papers in leading technical journals/conferences and currently
serves as Editor-in-Chief of an international journal and is part of the editorial board of several other
ones.

A Algorithms

Algorithm 1 Sequence of steps to encode secret message inside ZIP structure
X is MS-Office file that will contain the secret message
S is the secret message
C is the encoding table
F is the array of strings that lists the absolute name of the files stored in ZIP container

X = MS-Office file
F = array of strings which stores the absolute name of the files within the ZIP container (the elements
of F are alphabetically ordered)
M = number of elements of F' (the maximum number of characters that will be hidden)
input S
B =encode S in base 5
L = number of character of B
if L > M then
print "Too many characters to hide"
else
fori=1toMdo
if i < L then
X = append the file named F'[i] using compression algorithm C[B[i] + 1]
end if
end for
end if

78



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Algorithm 2 Sequence of steps to decode secret message from ZIP structure

X is MS-Office file that contains the secret message

S is the secret message

C is the decoding table

F is the array strings that lists the absolute name of the files stored in ZIP container

S =null
X = MS-Office file
F = array of string that stores the absolute name of the files within the ZIP container (the elements of F
are alphabetically ordered)
M = number of elements of F (the maximum number of characters that will be hidden)
fori=1toMdo
Bli]|=0
end for
fori=1toM do
K = algorithm used to compress the file F'[i]
BJi] = value associated to K in the C
end for
S = decode B from base 5
print S

79



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Algorithm 3 Sequence of steps to encode secret message by using the zero dimension image methodology
S is the file that contains the secret message
REL is the file pointing to the relationships file of the OLE-object inserted
MED is the folder pointing to the OLE-objects
CEN is the file that contains the elements to declare as image

if file extension == ".docx" then
REL = word\ _rels\document.xml.rels
MED = word\media
CEN = word\document.xml

else
if file extension == ".xIsx" then
REL = xl\drawings\ _rels\drawings.xml.rel
MED = xI\media
CEN = xl\drawings\drawings.xml
else
if file extension == ".pptx" then
REL = ppt\slides\_rels\slidel.xml.rel,
MED = ppt\media
CEN = ppt\slides\slide1.xml
else
goto end
end if
end if
end if

copy S into the folder MED

in the REL file add the relationships element

in the CEN file add the elements to declare as image
in the CEN file set the image behind text

in the CEN file set the image dimension equal zero
in the CEN file set the image in the left corner

80



Hiding Information into OOXML Documents: New Steganographic Perspectives Castiglione et al.

Algorithm 4 Sequence of steps to decode secret message by using the zero dimension image methodology
F is the absolute name of the file that contains the secret message in ZIP container
S is the file that contains the secret message
REL is the file pointing to the relationships file of the OLE-object inserted
MED is the folder pointing to the OLE-objects
CEN is the file that contains the elements to declare as image

if file extension == ".docx" then
REL = word\ _rels\document.xml.rels
MED = word\media
CEN = word\document.xml

else
if file extension == ".xIsx" then
REL = x1\drawings\ _rels\drawings.xml.rel
MED = x1\media
CEN = xl\drawings\drawings.xml
else
if file extension == ".pptx" then
REL = ppt\slides\_rels\slidel.xml.rel,
MED = ppt\media
CEN = ppt\slides\slide1.xml
else
goto end
end if
end if
end if

in the CEN file searches for an image with dimension equal zero
if result search == TRUE then
in the CEN file search the "rId" that refers to image with dimension equal to zero
J = value of the "rId" found
in the REL file search the "Target" value assigned for "rId" equal to J
F = value of the "Target" found
S = file referenced by F
else
print "There is no secret message in file"
end if

81



Hiding Information into OOXML Documents: New Steganographic Perspectives

Castiglione et al.

Algorithm 5 Sequence of steps to encode secret message using "rsid" values

X is the XML document which contains the sequences of rsid
S is the message to hide

H is the values of rsid

M 1is the maximum number of characters to be hidden in X

S =null
SA =null
go to the start of the XML document X
repeat
A =null
search in X next occurrence of "rsid"
A = value of "rsid"
H =append A
until eof(X)
L = number of characters in H
M= 4]
input S
LS=number of characters of S
if LS > M then
print "Too many characters to hide"
else
I=1
repeat
F = first character of hexadecimal representation of S(7)
S = second character of hexadecimal representation of S(7)
SA = append F
SA = append S
I=1+1
until 7/ < LS
go to the start of XML document X
I=1
repeat
search in X next occurrence of "rsid"
if / > LS then
A ="00000000"
else
for J=Jto 8 do
A=AnAlJ]
end for
end if
"rsid" = A
I=1+1
until eof(X)
end if

82



Hiding Information into OOXML Documents: New Steganographic Perspectives

Castiglione et al.

Algorithm 6 Sequence of steps to decode secret message from "rsid" values

X is the XML document which contains the sequences of rsid
S is the message to hide

H is the values of rsid

M is the maximum number of characters to be hidden in X

S =null
go to the start of XML document X
repeat
A =null
search in X next occurrence of "rsid"
A = value of "rsid"
H =append A
until eof(X)
L = number of characters in H
I=1
repeat
K=H[I|nH[[+1]
B = representation of hexadecimal value K
S =append B
I=1+2
until / — 1 <L

83



	Introduction
	The OOXML Format
	Information Hiding in MS-Office Files
	Data Hiding by Different Compression Algorithm of ZIP
	Data Hiding by Office Macro
	Data Hiding by Zero Dimension Image
	Data Hiding by the Revision Identifier Value
	Methodologies Compared
	Experiments
	Conclusions
	Algorithms

