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Abstract

Usage control is an extension of access control that additionally defines what must and must not
happen to data after access has been granted. The process of enforcing usage control requirements
on data must take into account all the different representations that the data may assume at different
levels of abstraction (e.g. file, window content, network packet). Therefore, multiple data flow track-
ing and usage control enforcement monitors are likely to exist, one at each relevant layer. Whenever
data flows from a representation at one layer to a representation at another layer (e.g. a file is loaded
and interpreted by an application), then the monitor for the initiating layer (in the example, the oper-
ating system) must notify the monitor for the receiving layer (in this example, an application, like a
browser) about the data being transfered. This is required in order to associate both representations
to the same data. In this paper, we present a bus system to support system-wide usage control en-
forcement that, for security and performance reasons, is implemented in a hypervisor. We provide an
example application for enforcing usage control across layers of abstraction in the context of social
networks. We evaluate security and performance of our bus system.

Keywords: Data-flow tracking, usage control, bus system, virtualization, information flow.

1 Introduction

Data usage control [2} 3, 4] is concerned with requirements that pertain to handling data after access to
it has been granted. Among other domains, usage control is relevant in the context of data protection,
management of intellectual property, compliance with regulations and digital rights management.

Once data consumers have received the data, in our context together with a policy that stipulates
usage control requirements, they use it. Using data means, for example, to render it on a screen, print it
on paper, execute it (if it is executable), modify it (e.g. with a text editor or a spreadsheet application),
copy and disseminate it or delete it. In case one or more of such usage actions takes place, data is
potentially transformed into one or more additional representations.

If usage control requirements are to be enforced on data, then this likely means that they have to be
enforced on all representations of that data. For instance, a picture can exist as a file, as content in a
window, as a Java object, and as part of a text document.

In a setting where enforcement is done on all rather than just one initital data representation, all
meaningful usage actions performed on the different representations must be tracked at (and across)
the different system layers. We have previously implemented data flow tracking systems that attribute
a semantics to the layer-specific actions. This semantics captures how data flows in-between different
representations within one layer of abstraction [S]. At runtime we can, for instance, track the flow of
data in-between memory regions, files or network sockets or, more generally, express how the mapping
from data to representations is updated upon execution of a relevant action.
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One may argue that it is simpler to perform tracking and enforcement just at the level of machine
code (processor instructions), instead of assuming one engine per layer. However, semantics of actions
such as “copy” or “delete” differ depending on the layer of abstraction considered (copy&paste in a text
editor, copy a file, clone an object, send an email), and it is almost impossible to automatically identify
those parts of the machine code that correspond to such high-level usage actions, especially concerning
today’s multicore or multiprocessor architectures. For this reason, the layered approach appears like
a viable alternative. Moreover, conceptually (i.e. abstracting from technical details), such a layered
approach scales well to distributed settings, like in the cloud domain, where the lack of centralized
control makes usage control even more challenging.

Motivating Example As explained above, it is not sufficient to perform data flow tracking and related
usage control enforcement at each layer in isolation. For the remainder of this work, we will refer to
the following scenario as base example, illustrated in figure [If consider a web browser that downloads
a picture, e.g., from a social network. Once it has received the picture, the browser processes it, i.e.,
rendering on the screen. Furthermore, the Firefox monitor sends the policy attached to the picture to a
policy storage using the bus communication (figure[I} arrow 7). Afterwards, when the monitor intercepts
an attempt of storing the picture in a cache file, the monitor for the operating system level is notified about
the identity of data being transferred (arrow 2) and only then the caching is allowed (arrow 3). Hence,
the data (the picture) exists in form of at least three different representations at the same time: as a set
of pixel at the level of the window manager, as file at the level of operating system and as an object
in the browser internal memory. Therefore, if the server ships the picture to the browser together with
a policy, then such a policy must be propagated through the system and associated to each additional
representation of the picture at every single layer. In general, for a system-wide enforcement of the
policy, if the application initiates the creation of a representation R at a different layer L, then we must
track the data flow that starts from R in L to all other representations at L and, recursively, to further
layers. Moreover, on receiving the new data, the operating system monitor queries the policy storage to
retrieve the policy associated to it (arrow 4) and processes the answer (arrow 5) enforcing it within its
scope, e.g., prohibiting accesses to the cache file from applications others than Firefox itself.

Research Problem In sum, we tackle the problem of (1) how to communicate policies and (2) the flow
of data from one layer of abstraction to another layer.

Solution Our solution consists of the design, implementation and evaluation of a bus system that we
implemented at the hypervisor layer, both for security and performance reasons.

Contribution Representation-independent usage control [4] is a relatively new area of research. While
several solutions have been proposed for the problem of the enforcement at single layers of abstraction [0,
S,17,18L 19,110, 11], we are not aware of a generic implementation of cross-layer tracking and enforcement.
Therefore, we see our contribution in the first architecture and implementation of a communication
infrastructure for the enforcement of usage control requirements across layers of abstraction. This paper
does not tackle issues related to conflicting policies [12], nor the problem of delegation [13]. This
paper is an extended version of the conference contribution [1] providing a refined description of the
communication infrastructure and resulting open issues as well as an extended evaluation.

Organization After a short overview of virtualization techniques, we illustrate our solution in Section 2]
and contrast it with related work in Section[3] Section[]lists detailed requirements while design choices
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Figure 1: Example of cross-layer monitor communication using bus system

and implementation issues are presented in Sections [5] and [f] Evaluations of our system in terms of
performance and security can be found in Section

2 Background: Virtualization

While the basics of usage control have been introduced in Section|[I] we recall the fundamentals of virtu-
alization technology—on which our work builds due to the implementation of the bus in a hypervisor—in
this section. We conclude this part by presenting the concrete infrastructure that we used to implement
our system, the NOVA hypervisor.

Virtualization is a methodology of logically dividing computer resources of one physical machine,
mainly hardware such as processor, main memory, network connectivity and others, into separate virtual
machines executing their instructions independently of each other. The virtual machine monitor (VMM),
often directly called hypervisor, is an application responsible for providing an environment in which sev-
eral virtual machines (“‘guests”) share the resources of one single host. This is achieved by controlling
requests and responses for hardware resources. Hypervisors are divided in two categories, mostly dif-
fering in the capability of directly accessing hardware [14]]. A type-1 hypervisor is a specialized system
that runs directly on the host’s hardware and that manages access requests from the guest OSs. In this
configuration, only a minimal OS tailored for virtualization support exists between the host’s hardware
and guest system. I/O performance of the guest OSs is hence rather high. However, specialized hard-
ware is required in order to support the additional hypervisor layer. A fype-2 (or hosted) hypervisor is
a common user process running in a conventional fully-fledged OS. Therefore, its major application is
in desktop virtualization solutions. Due to the required host OS, this solution usually does not perform
as efficiently as the type-1 hypervisor but, on the other hand, does not pose any special constraint on the
underlying hardware platform.

Virtualization techniques using type-1 hypervisors include paravirtualization, full virtualization and
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hardware-assisted virtualization. Hardware-assisted virtualization is a platform virtualization approach
that enables efficient full virtualization with help of hardware capabilities, primarily from the host pro-
cessor. Paravirtualization requires adaptations of the guest kernels in order to use the hypervisor.

Because it is inappropriate to force data consumers to reinstall or rearrange their computer systems,
our requirements for the bus infrastructure include the possibility of running the communication infra-
structure for a generic preinstalled OS and with a minimal overhead concerning both, performance as
well as disk usage. This precludes the use of a type-2 hypervisor, due to the decreased performance
generated by the additional OS, and therefore requires the adoption of a full virtualization technique,
considering the guest kernels’ modifications needed by paravirtualization.

Recent processor generations provide hardware support for virtualization directly integrated in the
CPU, namely Intel-VT (VT-x) or AMD-V. In addition to facilitating two different operation modes, for
virtual machines and hypervisor respectively, these virtualization extensions offer an additional instruc-
tion, “VMCALL” [15], for switching the execution context from the guest OS to the associated virtual
machine monitor. This particular instruction will be the key support for the communication between
bus infrastructure (in the host environment) and monitors (in the guest system). Due to the hardware
situation during development, we used an Intel processor and the corresponding VT-x virtualization
extensions during design and implementation, but the same concepts and techniques are applicable to
appropriate AMD processors.

One virtualization environment for the desired communication infrastructure is the NOVA OS Vir-
tualization Architecture [16], a type-1 hypervisor solution. By applying microkernel construction prin-
ciples in the area of full virtualization, NOVA bridges the gap between traditional microkernels and hy-
pervisors to minimize the trusted computing base of the architecture [[16]]. Following the design criterion
of component-based software engineering and the security principle of compartmentalization, NOVA
consists of three functional separated parts: the microhypervisor itself, the root partition manager (called
Sigma0) and the Virtual Machine Monitor (VMM). To minimize the attack surface, one instance of the
VMM is responsible for just one virtual machine. Each of these components, as well as device drivers for
bridging physical and virtual devices, additionally follows the principle of least privilege for maintaining
a high level of security. NOVA provides a suitable framework for our work, mainly due to its architec-
tural design and in particular to the component-based development and to its focus on security aspects.
The entire communication infrastructure can be developed as a separate entity, requiring only minimal
changes to the basic architecture. By using a type-1 hypervisor, no additional host OS is required, thus
minimizing modifications and workload on the data consumer’s system.

3 Related Work

Related work are cited throughout the text. Additionally, virtualization environments such as the in-
troduced NOVA architecture usually provide the possibility for inter-domain communication between
virtual machines. The Xen hypervisor uses XenBus for this connection [17]]. Furthermore, several com-
munication interfaces inside the OS exists. This includes common bus systems such as D-Bus [18] and
generic inter-process communication like local sockets or shared memory. Several existing research
projects introduce hypervisors dedicated to different specialized functionalities, like Bitvisor [[19], Tiny
Virtual Machine Monitor [20] or SecVisor [21]]. The latter as a hypervisor dedicated to security func-
tionality, especially harddisk encryption. Although all of the presented possibilities can be extended for
solving our introduced problem, we are not aware of a solution providing an external bus system for a
fast and secure communication between common applications inside the virtualized operating system.
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4 Requirements

Our goal is to provide a secure and fast communication infrastructure for usage control-related message
exchange across different levels of abstraction, illustrated in the introduction in figure (1|l The infrastruc-
ture should also provide an interface for storing and retrieving data from/to a predefined secure location
(requirement 2 below). Here data refers to both policies for enforcing usage control as well as data usage
information. Data usage information, for instance, includes the number of times a file has already been
accessed if a related policy restricts the number of accesses.

As explained in Section |2} the bus system has to be accessible independently of the data consumer’s
OS in which usage control monitors are executed, referred to as “platform independence of bus imple-
mentation in requirement 1.1. Considering the amount and the extremely sensible nature of messages,
security has to be considered as well, including tamper-resistant message exchange (requirement 4), se-
cure storage location for policies and additional usage information (requirement 2), and high availability
of the communication system (requirement 5) with as little performance overhead as possible (require-
ment 3). Data consumers usually have (OS-)administrator privileges and therefore can easily tamper
in-memory solutions such as shared memory and terminate running applications and services, including
existing bus systems. According to the security requirements this must not be possible in our solution.
Instead of relying on existing solutions for bus systems or direct inter-process communication, we fol-
lowed an approach that consists of “shifting” the usage-controlled system of the data consumer inside an
virtualized environment that, in addition, provides the desired communication functionalities. Although
tailored to usage control needs, the flexibility of the protocol design makes this solution easily extensible
and suitable for other purposes.

As far as we know, bus systems out of the OS’s scope for standard applications currently do not exist.
In summary, we require a high level of security and performance, resulting in the following requirements:

1. Infrastructure for information exchange:

1.1 Platform independence of bus implementation
1.2 Minimal modifications to existing OS of the data consumer and virtualization architecture

1.3 Virtualization of a preinstalled OS (data consumer’s system) and extension to use communi-
cation functionalities

2. Shared, secure location for policy storage not modifiable from within the OS
3. Minimal performance overhead of communication infrastructure
4. Tamper-resistant message exchange

5. High availability of the communication system

S Design

The NOVA architecture (see Section [2)) provides several options for our communication infrastructure.
One is to implement the bus component as a secure application. This is possible because in addition to
hosting several guests, the NOVA architecture can host stand-alone applications which are executed in-
dependently of any VM and detached from any OS. Instead, they operate in parallel with the instantiated
guest systems in an isolated execution environment, consequently including their own memory address
space. These applications are executed at the same level as the partition manager and the VMM in the
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hypervisor layer. Guest OSs inside VMs, operate in a special mode provided by the virtualization exten-
sions and use the same protection ring as if they ran natively on the hardware. An effective isolation is
thus achieved. The entire bus can be implemented in such a secure application, providing interfaces for
the VMM associated with the usage-controlled VM.

Another option is to implement the bus component as a virtual device model, a purely software-
based abstraction of hardware used by the guest systems to access existing physical devices. Virtual
device models are usually a means to access a present physical correspondent of the emulated hardware;
however, this connection to a physical entity is not mandatory. These device models are instantiated
and managed by the VMM associated to the guest VM and can also be designed to access the bus
component, without providing any device-specific functionality to the concerned guest OS. Basically,
only a communication interface to the VMM is required.

Although only one guest OS is intended to be used in our context, separating the bus system from the
concerned guest and the responsible VMM offers the opportunity to extend the solution across several
VMs in future work. This scenario would provide one central bus authority for any registered usage
control monitor in each VM.

However, sticking to the single-guest scenario addressed by our work, we decided to use the virtual
device model, illustrated as Device Drivers in figure 2| The reason is that although a bus in a separate
application provides stricter isolation, it also requires an additional step in the communication chain
between usage control monitors and the bus component. This is due to the design of the message scheme
of NOVA that does not allow direct communication between entities in its userland, i.e. between different
VMMs or applications running at the hypervisor layer. Hence, the secure application solution results
in necessary modifications of the NOVA architecture. In contrast, virtual device models are directly
integrated into the VMM. Exemplary device model instantiations in figure 2] include the virtual process
VCPU, a virtual harddisk HDD in addition to the developed bus component UCbus. By initiating the
VMM, designated virtual devices are instantiated. Both communication partners, the VMM and the
bus component UCbus, can exchange messages using already existing communication interfaces for
device models. This minimizes the required modifications: we only need to provide a handler for the
communication between guest OS and VMM, which is mandatory in both design scenarios.

Communication chain Figure [2illustrates the required communication steps, indicated as arrows be-
tween involved components, for a usage control message (including a policy, a retrieval request for a
policy, a usage event, the fact that data has been communicated from one layer to another, etc.). Once a
communication has been initiated by a usage control monitor (the Firefox monitor in an exemplary Linux
VM following the introduction’s example), the first involved entity is the OS kernel; as shown in figure 2]
the first communication step /. is from the usage control monitor to the kernel module. An additional
component between the kernel and the monitor is a userspace library, only used for encapsulating the
required communication facility between userspace and kernel, therefore not mentioned in the commu-
nication chain figure. The kernel module is responsible for translating the given memory address, which
is relative to the monitor’s virtual address space, into the kernel address space. A mapping between both
address spaces is required as the VMM and, afterwards, the bus component UCbus, need to read the
message’s content (e.g., a policy or a message about the creation of a new representation) directly from
the memory of the monitor. The message is then forwarded to the VMM (arrow 2.) associated with
the VM hosting the guest OS. Due to spatial memory isolation in NOVA for every instantiated VM, the
prepared memory address of the kernel cannot be accessed natively, neither by the VMM nor by the bus
component. For this purpose, this memory address has to be mapped into another appropriate address
space of the VM itself. The Partition manager provides an interface for this translation (figure 2} arrow
3.). Finally the last communication step is in the responsibility of the VMM to forward the message with
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Usage control
message

host mode
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Figure 2: Communication chain: Messages to bus component

the translated memory address to the bus component (figure 2} arrow 4.).

Here the message is processed and depending on the original purpose finally transmitted to the re-
ceiving entity. As shown in figure [3] for a notification the message is forwarded to another monitor
(dotted arrow). Following the introduction’s example this is the usage control monitor responsible for
the operating system (OSm). For messages concerning policies or data usage information such as storing
or retrieving, they are forwarded to a central policy storage (dashed line), which is also instantiated by
the virtual machine monitor similar to the bus component itself.

Communication protocol In order to exchange usage control information, different types of mes-
sages have to be considered. First of all, to avoid malicious entities joining the communication, each
usage control monitor must be registered to the communication infrastructure. During this registration,
the monitor submits its observation interface and receives a unique monitor identifier. This observation
interface identifies the layer of abstraction in which the monitor can enforce a given policy, e.g., file
access, windowing system or Firefox application. In order to identify valid communication partners, a
OS specific process identifier PID must also be submitted during the registration process. This autho-
rization check is also discussed in section [7.2] (assumption A.2). Additionally, registration allows for
later communication with monitors whose monitor ID is currently still unknown, by using the submitted
observation interface as receiver. Moreover, there exists a second type of messages, used for storing and
retrieving policies and usage information from the shared storage.

A notification message type has also to be provided: the receiver, identified either by a monitor ID
or an observation interface ID, has to be notified about the presence of a message to be retrieved. This
includes the notification to other monitors for enforcing a given policy or tracking the information flow.
Because the communication from the bus to the guest system operates asynchronously via interrupts, the
notification information has to be stored temporarily until the receiver monitor fetches the message upon
receiving the IRQ. Finally, an interface for fetching a buffered message has to be provided. A summary
of necessary message types is given in table[I]
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Figure 3: Communication chain: Processed messages

Message type | Description Required parameters (with appropriate
content type)

Registration Register monitor to bus for validation of | Monitor observation interface (ID), pro-
later communication attempts cess identifier (ID)

Store policy Store policy in shared policy storage Policy (memory address)

Get policy Retrieve policy from shared policy stor- | Policy or data item, receiver buffer (ID,
age memory address)

Notification Notify another monitor for enforcing de- | Monitor or observation interface, policy
noted policy or protecting given data | or data item (ID, ID)
item

Fetch message | Fetch temporarily stored message from | Receiver buffer (memory address)
bus

Table 1: Communication protocol: Message types

6 Implementation

After describing and motivating the architecture in the last section, we now sketch the implementation
of the communication infrastructure. We consider each component involved in the communication chain
together with its interface to other components.

The userspace library, the connector to the monitors, is designed as a common API library so that it
can be used easily by monitor developers. It has to provide an interface for encapsulating the required
communication with the kernel module for all introduced message types of the communication protocol.
The kernel module, responsible for translating given memory references from the user address space into
the physical address range of the virtualized OS, is implemented using the process filesystem procFsS for
communication with user applications. To separate the monitor registration from other message types,
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one generic communication line is solely dedicated to registrations whereas another unique communica-
tion interface is prepared for each monitor after a successful registration. For the communication with
the virtualization environment, the VM CALL instruction from the virtualization extensions is used to
escape the execution context of the OS and jump to a predefined handler in the associated VMM. The
inverse direction for communicating with the virtualized OS is implemented using interrupts. The ker-
nel thus has to register an IRQ handler for this task. Following requirement 1.2, the only modification
in the VMM is the handler method for receiving VMCALLSs from the guest. For the required address
translation, a message for accessing the guest’s memory is sent to the partition manager Sigma0 using
existing communication capabilities of NOVA. Finally, the usage control message is forwarded to the
bus component, where it is processed according to the message type.
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Figure 4: Notification to other monitors

Revisiting the example from the introduction, the notification behavior is illustrated in figure
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The monitors for Firefox and the OS first have to register with the bus. After receiving a web page
with sensitive content including an appropriate usage control policy, the Firefox monitor automatically
generates an appropriate policy for protecting the cache files from unauthorized reading, stipulating that
any other application except Firefox itself is not allowed to read the cache entries. This policy is stored
in the shared policy storage, and the OS-level receiver monitor, capable of controlling file access, is
informed with a notification message. Afterwards, the OS monitor has to protect the cache file; this as
well as the policy generation and storage procedures are not shown in figure 4] which only depicts the
behavioral schema of registration and notification, respectively.

7 Evaluation

Requirement 1 (Section [d) and its sub-requirements are met by design: establishing the communica-
tion infrastructure in the virtualization environment provides the possibility to use the bus functionality
regardless of the actual operating system of the data consumer. Due to the implementation of the bus
component as virtual device model, the virtualization architecture was only modified for providing a
handler for the VM CALL instruction, whereas the guest OS was not modified at all, but rather extended
to support the communication interface. Such an extension only relies on those mechanisms provided by
OSs to append additional functionalities, e.g. loading a kernel module. The NOVA architecture offers
the opportunity to use a preinstalled operating system as guest VM, complying with requirement 1.3. In
the following, we provide evidence that the other requirements are satisfied as well.

7.1 Performance

We evaluate the performance of the communication infrastructure, i.e., the message exchange between
one monitor and the bus component, as well as the communication between two monitors using a notifi-
cation message. To do so, we compare our solution to the software-based bus implementation D-Bus [[18]]
providing the same functionality and message interface, and factor out the impact of the virtualization
infrastructure by evaluating the following scenarios:

1. Debian Linux in NOVA: UCbus implementation
This scenario consists of our solution with the bus component in the NOVA virtualization environ-
ment. The guest OS is a common Debian Lenny installed natively on a physical harddisk.

2. Debian Linux native: D-Bus implementation
The guest OS mentioned in scenario 1 is booted as native OS without the virtualization environ-
ment. Using the system’s D-Bus daemon, monitors can exchange messages using an interface
similar to the solution of this paper, but via the D-Bus.

3. Debian Linux in NOVA: D-Bus
To illustrate the impact of the virtualization environment, performance is evaluated for the same
D-Bus implementation as introduced in scenario 2. Instead of using the OS natively, it is integrated
into a virtual machine using NOVA.

For the performance evaluation, we considered message bundles instead of single messages. The
introduced message types differ solely in the necessary processing in the bus component. Especially for
storing and retrieving a policy, a memory copy operation is involved, whose execution time depends on
the size of the actual policy. In general for sending a message to the bus, the communication chain is
the same, whereas for a notification message also the rearward direction has to be considered. There,
the destination monitor identifier and notification content has to be stored temporarily and subsequently
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fetched by the receiver. In sum, for messages related to policy storage, a higher computational effort
is required whereas for notifications the communication chain is more complex. In future application
scenarios with different monitors exchanging messages, not only one message type is used but rather
several. Therefore it is reasonable to combine several messages in a bundle for the evaluation. Hence,
these message bundles consist of one message for storing and for retrieving a policy. Additionally, one
notification message is included. Policy retrieval as well as notification messages have random values
for the destination monitor and the concerned policy.

For each of the three scenarios, we measured the overall time consumption for the same evaluation
procedure: After preparing the kernel module or accordingly initiating the D-Bus daemon, 15 simple
applications processes acting as usage control monitors were executed in parallel. Each monitor regis-
tered at the bus and continued with sending a given amount of message bundles. All measurements are
performed on an IBM Lenovo T60 with an Intel Core2 Duo T7200 2.0GHz, 2GB main memory and a
solid state harddisk in SATA AHCI mode for booting the virtualization environment and OS. The result
of the performance evaluation is shown in figure [5

Performance Evaluation
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W NOVA UCbus (Scenario 1) ® D-Bus native (Scenario 2) [ NOVA D-Bus (Scenario 3)

Figure 5: Performance Evaluation

We can see an almost linear correlation between time consumption and the amount of exchanged
message bundles for all considered scenarios. It is evident that scenario 1, with the solution we describe
and advocate in this paper, provides the fastest message exchange, followed by the D-Bus implemen-
tation in a natively booted OS. Hence, in terms of performance, our hypervisor-based solution is the
fastest. By design, this includes the requirement of using the NOVA virtualization environment, which
in fact decreases the overall performance of the data consumer’s system. The impact of the virtualization
environment itself is evaluated as comparison between scenarios 2 and 3. For this work the employment
of a virtualization technique was intended, and this observation hence refers not to a drawback but rather
a given fact.

In sum, our communication infrastructure provides satisfactory performance results, thus comply-
ing with requirement 3, “Minimal performance overhead.” Although direct communication using well-
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known inter-process communication between the monitors is faster, it implies major drawbacks conflict-
ing to the introduced requirements, as explained in section [4]

7.2 Security

Considering attacks to the usage control environment, the main issue is a user trying to subvert installed
usage control mechanisms, i.e., deployed policies. Usually the system is under exclusive control of
the user, especially in the distributed environment considered in this work. Therefore, the basic attack
scenario is as follows: a user in the role of data consumer inside the virtualized OS tries to circumvent
the usage control environment to gain more privileges and to initiate actions the policy prohibits. This is
possible using two different attacks:

1. Modifying content of messages exchanged between monitors
2. Preventing message exchange by attacking the availability of the communication infrastructure

This work’s focus is on the communication infrastructure. Therefore, exploiting vulnerabilities of
the monitors is out of the scope of our analysis because monitors are not part of this work and provide
their own security analysis, resulting in the first assumption:

A.1 No vulnerabilities in usage control monitors

Additionally, attacks on the virtualization environment NOVA are neglected, because it is an ongoing
development project currently still in a pre-release state. Thus breaking out of the VM and directly
attacking the bus component might be possible, but is not further investigated in this work, leading to the
second assumption:

A.2 No vulnerabilities in the virtualization environment

One important attack possibility concerns the authenticity of the monitors trying to register with the
bus as introduced in section[5] A malicious user could implement his own application with the intention
to store faulty or compensating policies or sending illegal notifications. Therefore, checking the authen-
ticity of validated and trustworthy monitors is essential. Using techniques from trusted computing, also
introduced later as countermeasures against other attacks, the integrity and authenticity of applications
can be guaranteed. As this attack is not related to the communication infrastructure, it is mentioned only
for completeness but induces a new assumption:

A.3 Monitors are authentic

The first attack scenario, modifying inter-monitor messages, requires an attacker to intercept the
messages and modify the content while the message is processed in a component involved in the com-
munication chain. Following the mentioned assumptions, possible attack points are either the userspace
library or the kernel module, as shown in figure [6] The userspace library is a shared library exclusively
designed to increase the usability of the communication interface for monitor developers. As all attacks
are based on the dynamic linking property of the OS for the library, a possible solution for preventing
such attacks is to use a static binding or directly communicating with the kernel module. The latter op-
portunity decreases the usability for monitor developers, but completely prevents this attack possibility.

The second potential attack point is the kernel module, mainly responsible for address translation
from the user address space into guest physical addresses. The communication interface between kernel
and user space using procFS depends on persistent structures for storing data related to the appropriate
entry in the process filesystem. Due to the persistence during module lifetime, it can be modified by other
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Figure 6: Attack tree: Modifying messages exchanged between monitors

kernel modules inserted by a malicious user at runtime. This modification includes the procFS entry
itself (e.g. callback function pointers) and the associated internal buffer. A malicious user can change
the function pointers or the buffer content to modify the notification message or the policy a monitor has
requested. Both attacks are highly severe for the usage control environment, but in practice induce a race
condition: the buffer content is only relevant until the receiver monitor have read it. Usually, this time
slice appears sufficiently small to prevent a systematic modification of the buffer.

Considering function pointers, a kernel module is vulnerable to other potentially malicious modules.
Therefore attacks to the kernel module cannot be prevented completely from the communication infra-
structure itself, but rather require a protection of the kernel’s integrity, provided for example by [21]. We
have to assume the security of the kernel by either such a protection mechanism or disabling support
for dynamically loading kernel modules and statically integrating the contributed kernel module for the
communication infrastructure:

A.4 Persistent memory protection in kernel modules

The second attack scenario pertains to availability. As shown in figure [/} one approach attacks the
virtualization environment. Following assumption A.1, the only way is to boot the data consumer’s OS
natively without the NOVA architecture to disrupt the communication chain. The presence of NOVA
in the boot process can be verified by using a specific boot loader such as Trusted Grub, which creates
hash values of every component involved in the boot process, e.g. boot modules, to establish a core root
of trust for measurement [22]]. Except the hardware requirement of a TPM, this solution introduces no
further dependencies, but guarantees a valid boot sequence.

As shown by the attack scenario for modifying messages, other attack points refer to the userspace
library and the kernel module. The already introduced countermeasures with using a static library or
directly communicating with the kernel decrease the maintainability of the infrastructure but completely
prevent this attack possibility.
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For the kernel module a new attack node is shown in the attack tree. By modifying the associ-
ated IRQ, completely deallocating the binding to the IRQ or more sophisticated attacks such as directly
accessing the APIC (Advanced Programmable Interrupt Controller) or modifications at the resource al-
location of the PCI structures, any notification from the UCbus remains unnoticed in the kernel module
and therefore in the usage control monitors. Although this issue affects mainly notification messages
between monitors, the other messages types are vulnerable to modifications of the procFS entry as well.
As explained above for attacks on the kernel module for modifying the message content, either a runtime
check of the kernel’s integrity is required, or a trustworthy kernel without module support is used for
booting the system, additionally with guaranteeing the trustworthiness of components involved in the
boot procedure using Trusted Grub.

The last attack scenario on the kernel is a denial-of-service attack on the communication infrastruc-
ture. The entire communication is limited to registered monitors by checking their process identifier
(PID) used in the registration. Therefore either forging the PID is necessary or a flooding with regis-
tration attempts. PID forging clearly requires a modification of the appropriate kernel mechanisms for
assigning these identifiers. Although using another process ID will introduce serious problems with
respect to the system’s stability, this attack might be possible. The introduced checking of the kernel
integrity and relying on a trustworthy kernel using Trusted Grub inhibits any malicious modification
at the kernel code, thus also a forging of the PID required in this attack scenario. Another DoS uses
registration messages for flooding the bus system. However trying to decrease the availability of the
communication infrastructure directly falls back to the performance of the overall system of the data
consumer. Therefore a malicious user basically thwarts himself with attacking the bus system using a
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DoS attack. Finally this attack scenario implies a high severity but only a very limited applicability due
to the explicit consequences for the attacker.

In sum, we can conclude that the communication infrastructure is secure under the mentioned as-
sumptions. Assumption A.1 and A.3 refer to the communication endpoints in the OS, namely the usage
control monitors. This work focuses on the infrastructure for message exchange. Therefore, the moni-
tors and the virtualization environment NOVA and especially their security are not covered in this work.
Finally, only assumption A.4 that requires a protection mechanism of the kernel’s integrity is rather a
strong condition. Using a static kernel image without module support induces high restrictions for the
affected user. Providing a runtime verification of the kernel integrity requires further modifications at
the system in addition to further performance overhead. However protecting the kernel against malicious
modules is suggested, although the attack risk without any guardian is acceptable due to the timing issue.
Using such a verification technique in addition to Trusted Grub offers the possibility to detect at least any
modification for attacking the availability, and therefore the data provider can deny to deploy his data in
such a case.

8 Future work

Recalling Section[7] regardless of the specific solution adopted to provide their connection, authentication
of monitors is still an open question. This issue, together with an improved model for sensitive data
tracking across layers of abstraction, is the subject of current investigations: without an appropriate
information flow model, the automatic generation of notification messages is not possible. Moreover, a
refined model and a language are needed to specify and translate policies that simultaneously address
representations at different layers [4]. These issues, albeit orthogonal to the contributed solution, are
mentioned for completeness, since they are relevant for our vision of a comprehensive usage control
environment.

In terms of future developments, the platform-dependent components of our infrastructure should
be ported to other operating systems like Microsoft Windows or Apple Mac OS X. This requires the
extension of NOVA for booting these operating systems and the existence of usage control monitors for
such environments.

Next, we want to investigate the feasibility of extending the communication infrastructure to connect
monitors, or in general, processes, across different virtual machines. Although this process introduces
a plethora of new technical issues, the interface between monitors at two different layers would be con-
ceptually the same, be the two layers in the same machine or not. Moreover, the usefulness of a fast,
secure and reliable way to communicate with another machine (virtualized on the same platform) is be-
yond mere usage control purposes, in particular considering the increasingly prominent role of cloud
architectures nowadays.

Last, but not least, we want to look into deployment strategies to easily distribute our communication
infrastructure to data consumers.

9 Conclusions

With this work, we addressed the problem of connecting usage control monitors at different layers of
abstraction. The simultaneous existence of multiple representations of the same data within the system
(and the need of connecting all of them) requires data-flow tracking monitors to exchange information,
possibly across different levels of abstraction; this is required in order to maintain a consistent state of
data distribution among the system. Considering the amount and the extremely sensible nature of the
messages exchanged, performance and security issues are key factors to be taken into account.
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As an example, we considered a picture both as content of a webpage at the browser level and as
a cache file at the operating system level: if the browser creates a cache file, it must notify the OS-
level monitor that that file must, from that moment onwards, be monitored as well. A proof-of-concept
implementation of this use case is presented in details in Section[6|and evaluated in Section[7]

In contrast to other solutions for inter-process communication such as D-Bus or shared memory (Sec-
tions @] [7), our approach is to create an operating system-independent bus system at the hypervisor level.
This choice was motivated by the security and performance concerns explained above (and afterwards
justified by evaluation results, as shown in Section[7). While analyzing existing virtualization solutions,
some turned out to be inadequate for our goal, violating functional (e.g. platform independence) or non-
functional (e.g. performance overhead) requirements. Other solutions, like XEN [17], or similar research
projects, like BitVisor [[19] or SecVisor[21]], have been taken into account, but were eventually discarded
when compared to the NOVA architecture (Section [2)). This was due to hardware requirements, larger
size of the trusted codebase or required amount of modifications to the original architecture. Among the
valid open-source alternatives, in fact, NOVA seemed to be the best framework to develop our bus system
(Section [2)), in particular given its focus on security and its compartmentalized structure. When offered
two different options for our bus integration (as a device model or as a secure application), although they
were both viable alternatives, we opted for the former, due to the smaller number of steps required in the
communication chain and to its easier integration into the existing architecture.

In Section [/| we evaluated our solution against various types of attacks and compared it with two
alternatives. According to our experimental results, our bus system performs better than an equivalent
D-Bus implementation. For obvious reasons, only attacks concerning our specific communication solu-
tion have been taken into account: vulnerabilities in external components, like NOVA or usage control
monitors, and generic attacks, such as for instance, resetting the TPM component to forge a fake trusted
boot [23]], are out of the scope of our analysis.

Finally, despite being designed for a specific well-defined purpose in the context of cross-layer usage
control enforcement, the flexibility of our bus protocol makes it suitable for many other needs requir-
ing a fast and secure message exchange for common userspace applications. In terms of future work
(Section [), we want to investigate the issues in the monitor authentication process, the feasibility of
extending our architecture to support other platforms (Microsoft Windows and Mac OS X) and the com-
munication between processes in different virtual machines. Moreover, we work on aspects related to
the deployment of our infrastructure.
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