1. Andreeva E., Ignatov D.I., Grachev A., andSavchenko A.V.Extraction of visual features for recommendation of products via deep learning. In International Conference on Analysis of Images, Social Networks and Texts, Springer, Cham, pp.201-210, 2018. 2. Shankar D., Narumanchi S., Ananya H.A., Kompalli P., andChaudhury K. Deep learning based large scale visual recommendation and search for e-commerce,2017, arXiv preprint arXiv:1703.02344. 3. de Barros Costa, E., Rocha, H.J.B., Silva, E.T., Lima, N.C., and Cavalcanti, J. Understanding and personalising clothing recommendation for women. In World Conference on Information Systems and Technologies, Springer, Cham, pp.841-850, 2017. 4. Tuinhof H., Pirker C., andHaltmeier M.Image-based fashion product recommendation with deep learning. In International Conference on Machine Learning, Optimization, and Data Science, Springer, Cham, pp.472-481, 2018. 5. Yang Z., Su Z., Yang Y., andLin G.From recommendation to generation: A novel fashion clothing advising framework. In2018 7th International Conference on Digital Home (ICDH), IEEE, pp.180-186, 2018. 6. Liu J., Song X., Chen Z., andMa J.Neural fashion experts: I know how to make the complementary clothing matching.Neurocomputing, 359, pp.249-263, 2019. 7. Zhou W., Mok P.Y., Zhou Y., Zhou Y., Shen J., Qu Q., andChau K.P.Fashion recommendations through cross-media information retrieval.Journal of Visual Communication and Image Representation, 61, pp.112-120, 2019. 8. Su X., Gao M., Ren J., Li Y., andRätsch M.Personalized clothing recommendation based on user emotional analysis.Discrete Dynamics in Nature and Society, 2020. 9. Borji A.Pros and cons of gan evaluation measures.Computer Vision and Image Understanding, 179, pp.41-65, 2019. 10. Goodfellow I.,Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets.Advances in neural information processing systems, 27, 2014. 11. Liu L., Zhang H., Ji Y., andWu Q.J.Toward AI fashion design: An Attribute-GAN model for clothing match.Neurocomputing, 341, pp.156-167, 2019. 12. Kang W.C., Kim E., Leskovec J., Rosenberg C., andMcAuley, J. Complete the look: Scene-based complementary product recommendation. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.10532-10541, 2019 13. Yin R., Li K., Lu J., andZhang G.Enhancing fashion recommendation with visual compatibility relationship. InThe World Wide Web Conference, pp.3434-3440, 2019. 14. Han X., Wu Z., Jiang Y.G., andDavis L.S.Learning fashion compatibility with bidirectional lstms. InProceedings of the 25th ACM international conference on Multimedia, pp.1078-1086, 2017. 15. Heinz S., Bracher C., andVollgraf, R. An LSTM-based dynamic customer model for fashion recommendation,2017, arXiv preprint arXiv:1708.07347. 16. Jo S.Y., Jang S.H., Cho H.E., andJeong J.W.Scenery-based fashion recommendation with cross-domain geneartive adverserial networks. In2019 IEEE International Conference on Big Data and Smart Computing (BigComp) , IEEE, pp.1-4, 2019. 17. Guan C., Qin S., andLong Y.Apparel-based deep learning system design for apparel style recommendation.International Journal of Clothing Science and Technology, 2019. 18. Saga, R. and Duan, Y.Apparel Goods Recommender System Based on Image Shape Features Extracted by a CNN. In2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, pp.2365-2369, 2018. 19. Kumar, S. and Gupta, M.D. c+ GAN: Complementary Fashion Item Recommendation, 2019, arXiv preprint arXiv:1906.05596. 20. Huynh C.P., Ciptadi A., Tyagi A., andAgrawal, A. CRAFT: Complementary Recommendations Using Adversarial Feature Transformer,2018, arXiv preprint arXiv:1804.10871. 21. Xiao H., Rasul K., andVollgraf, R. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,2017, arXiv preprint arXiv:1708.07747. 22. Shih Y.S., Chang K.Y., Lin H.T., andSun M.Compatibility family learning for item recommendation and generation. InProceedings of the AAAI Conference on Artificial Intelligence, 32(1), 2018. 23. Cucurull G., Taslakian P., andVazquez D.Context-aware visual compatibility prediction. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.12617-12626, 2019. 24. He, R. and McAuley, J. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. Inproceedings of the 25th international conference on world wide web, pp.507-517, 2016. 25. Zhang X., Jia J., Gao K., Zhang Y., Zhang D., Li J., andTian Q.Trip outfits advisor: Location-oriented clothing recommendation.IEEE Transactions on Multimedia, 19(11), pp.2533-2544, 2017. 26. Sulthana, A.R. and Ramasamy, S.Ontology and context based recommendation system using neuro-fuzzy classification.Computers & Electrical Engineering, 74, pp.498-510, 2019. 27. Mishra, R.K. and Urolagin, S.A Sentiment analysis-based hotel recommendation using TF-IDF Approach. In2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), IEEE, pp.811-815, 2019. 28. Sulthana A.R., Gupta M., Subramanian S., andMirza S.Improvising the performance of image-based recommendation system using convolution neural networks and deep learning.Soft Computing, 24(19), pp.14531-14544, 2020. 29. Jothi J.A.A. and Rajam, V.M.A. A survey on automated cancer diagnosis from histopathology images.Artificial Intelligence Review, 48(1), pp.31-81, 2017. 30. Mishra R.K., Urolagin S., andJothi J.A.A. Sentiment Analysis for POI Recommender Systems. In2020 SeventhInternational Conference on Information Technology Trends (ITT), IEEE, pp.174-179, 2020. |