Int J Performability Eng ›› 2023, Vol. 19 ›› Issue (3): 175-183.doi: 10.23940/ijpe.23.03.p3.175183
Previous Articles Next Articles
Vaishali Arya* and Tapas Kumar
Contact:
* E-mail address: [email protected]
Vaishali Arya and Tapas Kumar. Boosting X-Ray Scans Feature for Enriched Diagnosis of Pediatric Pneumonia using Deep Learning Models [J]. Int J Performability Eng, 2023, 19(3): 175-183.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Ayan E., Karabulut B., andÜnver H.M.Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images. Arabian Journal for Science and Engineering, pp. 1-17, 2022. 2. McAllister D.A., Liu L., Shi T., Chu Y., Reed C., Burrows J., Adeloye D., Rudan I., Black R.E., Campbell H., andNair, H. Global Regional, and National Estimates of Pneumonia Morbidity and Mortality in Children Younger Than 5 Years Between2000 and 2015: A Systematic Analysis. The Lancet Global Health, vol. 7, no. 1, pp. e47-e57, 2019. 3. Drake D.E., Cohen A., andCohn J.National Hospital Antibiotic Timing Measures for Pneumonia and Antibiotic Overuse. Quality Management in Healthcare, vol. 16, no. 2, pp. 113-122, 2007. 4. World Health Organization.Standardization of interpretation of chest radiographs for the diagnosis of pneumonia in children, no. WHO/V&B/01.35, 2001. 5. Ker J., Wang L., Rao J., andLim T.Deep Learning Applications in Medical Image Analysis. IEEE Access, no. 6, pp. 9375-9389, 2017. 6. Neuman M.I., Lee E.Y., Bixby S., Diperna S., Hellinger J., Markowitz R., Servaes S., Monuteaux M.C., andShah S.S.Variability in the Interpretation of Chest Radiographs for the Diagnosis of Pneumonia in Children. Journal of hospital medicine, vol. 7, no. 4, pp. 294-298, 2012. 7. Loey M., Smarandache F., andM. Khalifa, N.E. Within the Lack of Chest COVID-19 X-Ray Dataset: A Novel Detection Model based on GAN and Deep Transfer Learning. Symmetry, vol. 12, no. 4, pp. 651, 2020. 8. Batra S., Sharma H., Boulila W., Arya V., Srivastava P., Khan M.Z., andKrichen M.An Intelligent Sensor Based Decision Support System for Diagnosing Pulmonary Ailment through Standardized Chest X-Ray Scans. Sensors, vol. 22, no. 19, pp. 7474, 2022. 9. Shen D., Wu G., andSuk H.I.Deep Learning in Medical Image Analysis. Annual review of biomedical engineering, vol. 19, pp. 221-248, 2017. 10. Grewal M., Srivastava M.M., Kumar P., andVaradarajan, S. Radnet: Radiologist Level Accuracy using Deep Learning for Hemorrhage Detection in CT Scans. In2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, pp. 281-284, 2018. 11. Mazurowski M.A., Buda M., Saha A., andBashir M.R.Deep Learning in Radiology: An Overview of the Concepts and a Survey of the State of the Art with Focus on MRI. Journal of magnetic resonance imaging, vol. 49, no. 4, pp. 939-954, 2019. 12. Batra S., Khurana R., Khan M.Z., Boulila W., Koubaa A., andSrivastava P.A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. Entropy, vol. 24, no. 4, pp. 533, 2022. 13. Tai S.C., Liao T.W., Chang Y.Y., andYeh, C.P. Automatic White Balance Algorithm through the Average Equalization and Threshold. In2012 8th International Conference on Information Science and Digital Content Technology (ICIDT2012), IEEE, vol. 3, pp. 571-576, 2012. 14. Huo J.Y., Chang Y.L., Wang J., andWei X.X.Robust Automatic White Balance Algorithm using Gray Color Points in Images. IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 541-546, 2006. 15. Kim S., Kim W.J., andKim, S.D. Automatic White Balance based on Adaptive Feature Selection with Standard Illuminants. In2008 15th IEEE International Conference on Image Processing, IEEE, pp. 485-488, 2008. 16. Lam, E.Y. Combining Gray World and Retinex Theory for Automatic White Balance in Digital Photography. In Proceedings of the Ninth International Symposium on Consumer Electronics (ISCE2005), IEEE, pp. 134-139, 2005. 17. Bae Y., Jang J.H., andRa, J.B. Gamut-Adaptive Correction in Color Image Processing. In2010 IEEE International Conference on Image Processing, IEEE, pp. 3597-3600, 2010. 18. Chen, C.L. and Lin, S.H.Intelligent Color Temperature Estimation using Fuzzy Neural Network with Application to Automatic White Balance. Expert Systems with Applications, vol. 38, no. 6, pp. 7718-7728, 2011. 19. Sanila K.H., Balakrishnan A.A., andSupriya, M.H. Underwater Image Enhancement using White Balance, USM and CLHE. In2019 International Symposium on Ocean Technology (SYMPOL), IEEE, pp. 106-116, 2019. 20. Albahli S., Rauf H.T., Algosaibi A., andBalas V.E.AI-Driven Deep CNN Approach for Multi-Label Pathology Classification using Chest X-Rays. PeerJ Computer Science, vol.7, p.e495, 2021. 21. Chandra, T.B. and Verma, K. Pneumonia Detection on Chest X-Ray using Machine Learning Paradigm. In Proceedings of 3rd International Conference on Computer Vision and Image Processing: CVIP2018, Springer Singapore, vol. 1, pp. 21-33, 2020. 22. Kuo K.M., Talley P.C., Huang C.H., andCheng L.C.Predicting Hospital-Acquired Pneumonia Among Schizophrenic Patients: A Machine Learning Approach. BMC Medical Informatics and Decision Making, vol. 19, no. 1, pp.1-8, 2019. 23. Yue H., Yu Q., Liu C., Huang Y., Jiang Z., Shao C., Zhang H., Ma B., Wang Y., Xie G., andZhang H.Machine Learning-Based CT Radiomics Method for Predicting Hospital Stay in Patients with Pneumonia Associated with SARS-CoV-2 Infection: A Multicenter Study. Annals of translational medicine, vol. 8, no. 14, 2020. 24. Kadry S., Nam Y., Rauf H.T., Rajinikanth V., andLawal, I.A. Automated Detection of Brain Abnormality using Deep-Learning-Scheme: A Study. In2021 seventh international conference on bio signals, images, and instrumentation (ICBSII), IEEE, pp. 1-5, 2021. 25. Sharma H., Jain J.S., Bansal P., andGupta S. Feature Extraction and Classification of Chest X-Ray Images using CNN to Detect Pneumonia. In2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), IEEE, pp. 227-231, 2020. 26. Stephen O., Sain M., Maduh U.J., andJeong D.U.An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of healthcare engineering, 2019. 27. Kermany D., Zhang K., andGoldbaum M.Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification. Mendeley data, vol. 2, no. 2, pp. 651, 2018. 28. Rajpurkar P., Irvin J., Zhu K., Yang B., Mehta H., Duan T., Ding D., Bagul A., Langlotz C., Shpanskaya K., andLungren, M.P. Chexnet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv preprint arXiv:1711.05225, 2017. 29. Janizek J.D., Erion G., DeGrave, A.J., and Lee, S.I. An Adversarial Approach for the Robust Classification of Pneumonia from Chest Radiographs. In Proceedings of the ACM conference on health, inference, and learning, pp. 69-79, 2020. 30. Zhang J., Xie Y., Pang G., Liao Z., Verjans J., Li W., Sun Z., He J., Li Y., Shen C., andXia Y.Viral Pneumonia Screening on Chest X-Rays using Confidence-Aware Anomaly Detection. IEEE transactions on medical imaging, vol. 40, no. 3, pp. 879-890, 2020. 31. Tuncer T., Ozyurt F., Dogan S., andSubasi A.A Novel Covid-19 and Pneumonia Classification Method based on F-Transform. Chemometrics and intelligent laboratory systems, vol. 210, pp. 104256, 2021. 32. Rahman T., Chowdhury M.E., Khandakar A., Islam K.R., Islam K.F., Mahbub Z.B., Kadir M.A., andKashem S.Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-Ray. Applied Sciences, vol. 10, no. 9, pp. 3233, 2020. 33. Liang, G. and Zheng, L.A Transfer Learning Method with Deep Residual Network for Pediatric Pneumonia Diagnosis. Computer methods and programs in biomedicine, vol. 187, pp. 104964, 2020. 34. Ibrahim A.U., Ozsoz M., Serte S., Al-Turjman, F., and Yakoi, P.S. Pneumonia Classification using Deep Learning from Chest X-Ray Images During COVID-19. Cognitive Computation, pp. 1-13, 2021. 35. Deng J., Dong W., Socher R., Li L.J., Li K., andFei-Fei, L. Imagenet: A Large-Scale Hierarchical Image Database. In2009 IEEE conference on computer vision and pattern recognition, IEEE, pp. 248-255, 2009. 36. White Balance, https://docs.gimp.org/2.10/en/gimp-layer-white-balance.html, accessed on November 18, 2022. 37. Reza A.M.Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement. Journal of VLSI signal processing systems for signal, image and video technology, vol. 38, pp. 35-44, 2004. 38. Pizer S.M., Amburn E.P., Austin J.D., Cromartie R., Geselowitz A., Greer T., ter Haar Romeny, B., Zimmerman, J.B., and Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355-368, 1987. 39. Pizer S.M.Contrast-Limited Adaptive Histogram Equalization: Speed and Effectiveness Stephen M. Pizer, R. Eugene Johnston, James P. Ericksen, Bonnie C. Yankaskas, Keith E. Muller Medical Image Display Research Group. In Proceedings of the first conference on visualization in biomedical computing, Atlanta, Georgia, vol. 337, pp. 1, 1990. 40. Wang, J. and Perez, L.The Effectiveness of Data Augmentation in Image Classification using Deep Learning. Convolutional Neural Networks Vis. Recognit, vol. 11, no. 2017, pp. 1-8, 2017. 41. Nijaguna G.S., Babu J.A., Parameshachari B.D., de Prado, R.P., and Frnda, J. Quantum Fruit Fly Algorithm and ResNet50-VGG16 for Medical Diagnosis. Applied Soft Computing, vol. 136, pp. 110055, 2023. 42. Li J., Ke L., Du Q., Ding X., andChen X.Research on the Classification of ECG and PCG Signals based on BiLSTM-GoogLeNet-DS. Applied Sciences, vol. 12, no. 22, pp. 11762, 2022. 43. Alsharabi N., Shahwar T., Rehman A.U., andAlharbi Y.Implementing Magnetic Resonance Imaging Brain Disorder Classification via AlexNet-Quantum Learning. Mathematics, vol. 11, no. 2, pp. 376, 2023. 44. Mao W.L., Chen W.C., Wang C.T., andLin Y.H.Recycling Waste Classification using Optimized Convolutional Neural Network. Resources, Conservation and Recycling, vol. 164, pp. 105132, 2021. 45. Kumar S., Gupta S.K., Kaur M., andGupta U.VI-NET: A Hybrid Deep Convolutional Neural Network using VGG and Inception V3 Model for Copy-Move Forgery Classification. Journal of Visual Communication and Image Representation, vol. 89, pp. 103644, 2022. 46. Sun T., Ding S., andGuo L.Low-Degree Term First in ResNet, Its Variants and the Whole Neural Network Family. Neural Networks, vol. 148, pp. 155-165, 2022. 47. MS, M. and SS, S.R.Optimal Squeeze Net with Deep Neural Network-Based Arial Image Classification Model in Unmanned Aerial Vehicles. Traitement du Signal, vol. 39, no. 1, 2022. 48. Hidayatullah, R.C. and Violina, S.Convolutional Neural Network Architecture and Data Augmentation for Pneumonia Classification from Chest X-Rays Images. Int J Innov Sci Res Technol, vol. 5, pp. 158-164, 2020. |
[1] | Janarthanan Sekar and Ganesh Kumar T. Hyperparameter Tuning in Deep Learning-Based Image Classification to Improve Accuracy using Adam Optimization [J]. Int J Performability Eng, 2023, 19(9): 579-586. |
[2] | Sanjay Razdan, Himanshu Gupta, and Ashish Seth. D-SVM: A Deep Support Vector Machine Model with Different Kernel Types for Improved Intrusion Detection Performance [J]. Int J Performability Eng, 2023, 19(9): 598-606. |
[3] | Aashita Rajput, Muskan Yadav, Sachin Yadav, Megha Chhabra, and Arun Prakash Agarwal. Patch-Based Breast Cancer Histopathological Image Classification using Deep Learning [J]. Int J Performability Eng, 2023, 19(9): 607-623. |
[4] | Kavita Pandey, and Dhiraj Pandey. Real-Time Crop Disease Detection and Remedial Suggestion through Deep Learning-based Smartphone Application [J]. Int J Performability Eng, 2023, 19(8): 491-498. |
[5] | Savita Khurana, Gaurav Sharma, and Bhawna Sharma. Hybrid Machine Learning Model for Load Prediction in Cloud Environment [J]. Int J Performability Eng, 2023, 19(8): 507-515. |
[6] | Rakesh Kumar, Sunny Arora, Ashima Arya, Neha Kohli, Vaishali Arya, and Ekta Singh. Ensemble Learning for Appraising English Text Readability using Gompertz Function [J]. Int J Performability Eng, 2023, 19(6): 388-396. |
[7] | Manvi Khatri and Ajay Sharma. Deep Learning Approach based on Iris, Face, and Palmprint Fusion for Multimodal Biometric Recognition System [J]. Int J Performability Eng, 2023, 19(6): 407-416. |
[8] | Shreshtha Singh and Arun Sharma. State of the Art Convolutional Neural Networks [J]. Int J Performability Eng, 2023, 19(5): 342-349. |
[9] | Shalaka Prasad Deore. SongRec: A Facial Expression Recognition System for Song Recommendation using CNN [J]. Int J Performability Eng, 2023, 19(2): 115-121. |
[10] | Shikha Choudhary and Bhawna Saxena. Image-Based Crop Disease Detection using Machine Learning Approaches: A Survey [J]. Int J Performability Eng, 2023, 19(2): 122-132. |
[11] | Pavneet Singh, Jigyasa Chopra, Amandeep Singh, Nikita Nijhawan, and Kritika. Deep Learning Innovations for Enhanced Drusen Detection in Retinal Images [J]. Int J Performability Eng, 2023, 19(12): 779-787. |
[12] | Kamireddy Vijay Chandra, Kala Praveen Bagadi, Kalapala Vidya Sagar, R. Manjula Sri, and K. Sudha Rani. Deep Learning-Powered Corneal Endothelium Image Segmentation with Attention U-Net [J]. Int J Performability Eng, 2023, 19(11): 736-743. |
[13] | Jitender Tanwar, Sanjay Kumar Sharma, Mandeep Mittal, and Ashok Kumar Yadav. Classification of Web Services for Efficient Performability [J]. Int J Performability Eng, 2023, 19(10): 654-662. |
[14] | Priyanshu Verma, Ishan Sharma, Sonia Deshmukh, and Rohit Vashisht. Customer Churn Analysis using Spark and Hadoop [J]. Int J Performability Eng, 2023, 19(10): 663-675. |
[15] | Sachin Jain and Vishal Jain. Ensemble Techniques for Classification of Brain Tumor Images Based on Weighting Average of Various Deep Learning-Based Components Models [J]. Int J Performability Eng, 2023, 19(10): 676-686. |
|