As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The aim of this paper is to enable model guided multi-scale and multi-modal image integration for the head and neck anatomy. The image modality used for this purpose includes multi-pose Magnetic Resonance Imaging (MRI), Mega Voltage CT, and hand-held Optical Coherence Tomography. A biomechanical model that incorporates subject-specific young's modulus and shear modulus properties is developed from multi-pose MRI, positioned in the treatment setup using Mega Voltage CT (MVCT), and actuated using multiple kinect surface cameras to mimic patient postures during Optical Coherence Microscopy (OCM) imaging. Two different 3D tracking mechanisms were employed for aligning the patient surface and the probe position to the MRI data. The results show the accuracy of the two tracking algorithms and the 3D head and neck deformation representing the multiple poses, the subject will take during the OCM imaging.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.