As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Hierarchical graphs are a frequent solution for capturing symbolic data due the importance of hierarchies for defining knowledge. In these graphs, relations among elements may contain large portions of the element's semantics. However, knowledge discovery based on analyzing the patterns of hierarchical relations is rarely used. We outline four inference based algorithms exploiting semantic properties of hierarchically represented knowledge for producing new links, and test one of them on a generalization of Cyc's KB. Finally, we argue why such algorithms can be useful for unsupervised learning and supervised analysis of a KB.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.