As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This article deals with the fair allocation of indivisible goods and its generalization to matroids. The notions of fairness under consideration are equitability, proportionality and envy-freeness. It is long known that some instances fail to admit a fair allocation. However, an almost fair solution may exist if an appropriate relaxation of the fairness condition is adopted. This article deals with a matroid problem which comprises the allocation of indivisible goods as a special case. It is to find a base of a matroid and to allocate it to a pool of agents. We first adapt the aforementioned fairness concepts to matroids. Next we propose a relaxed notion of fairness said to be near to fairness. Near fairness respects the fairness up to one element. We show that a nearly fair solution always exists and it can be constructed in polynomial time in the general context of matroids.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.