As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The problem of missing values frequently occurs during data analysis. Imputation is one of the solutions to handle missing data. Clinical data often contain multiple measurements such as laboratory test results which are measured at different time points. In this study, we compared three imputation methods and their effects on different multiple measurement data sets with different sampling time periods. Data sets of liver cancer were used in this study for classification of liver cancer recurrence based on two types of classification models built by support vector machine (SVM) and random forests. The results report appropriate combinations of imputation methods and sampling time periods which achieve better classification results than those of other imputation methods and periods. These reported the leading imputation method with SVM is significantly different (P<0.001) from mean imputation with SVM which is frequently used by data sets with missing values.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.