As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Knowledge of how diseases progress and transform is crucial for clinical decision making. Frequent pattern mining techniques, such as sequential pattern mining (SPM) algorithms, can automatically extract such knowledge from large collections of electronic medical records (EMR). However, EMR data are usually unorganized and highly noisy. Finding meaningful disease patterns often calls for manual manipulation such as cohort and feature selection on EMR data by medical professionals. In this paper, we propose a topic-model-based SPM approach to find disease progression patterns from diagnostic records. We improve the traditional SPM algorithms by filtering and grouping the diagnosis sequences according to different clinical topics. These topics represent certain clinical conditions with closely related diagnoses, and are detected without prior medical knowledge. The experiment on real-world EMR data shows that our approach is able to find meaningful progression patterns with less noises, and can help quickly identify interesting patterns related to a certain clinical condition with less human effort.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.