As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we suggest a different methodology to shorten the code optimization development time while getting a unified code with good performance on different targeted devices. In the scope of this study, experiments are illustrated on a Discontinuous Galerkin code applied to Computational Fluid Dynamics. Tests are performed on CPUs, KNL Xeon-Phi and GPUs where performance comparison confirms that the GPU optimization guideline leads to efficient versions on CPU and Xeon-Phi for this kind of scientific applications. Based on these results, we finally suggest a methodology to end-up with an efficient hybridized CPU–GPU implementation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.