As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Swarm Intelligence (SI)-based metaheuristics are frequently used to solve complex optimization problems, which are too hard to be solved by classic exact algorithms. Inspired by nature, SI particles move through a search space in pursuit of good solutions. Even using SI, solving some large problems still takes a lot of time, e.g., due to the high number of dimensions and large search spaces. In order to over-come this, parallel implementations of SI algorithms have been investigated. They are typically based on low-level approaches for parallelism, such as MPI, OpenMP, and CUDA, which are tedious and error-prone to use. To overcome these issues, frameworks for high-level parallel programming such as the Muenster Skeleton Library (Muesli) can be used. We show how two SI algorithms, namely Particle Swarm Optimization (PSO) and Fish School Search (FSS), can be implemented in Muesli easily. Experimental results demonstrate the obtained performance and good scalability.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.