As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents the design and simulation of a Koch curve fractal antenna, developed according to the second iteration of the Koch snowflake fractal for S-band, C-band, X-band and Ku-band. The simulated antenna shows good performance for the operating frequencies and desirable gain, bandwidth and VSWR parameters. Being a compact antenna, it has a size, geometry and characteristics that go in accord with the CubeSat’s structure standards. The antenna was fabricated on a 1.5 mm thick FR-4 substrate. The VSWR achieved values are lower than 1.4 for the frequencies used (2.1 GHz to 2.4 GHz and 7.4 GHz to 8.9 GHz) with a simulated omnidirectional radiation pattern. A maximum gain of 6.8 dBi was achieved. As this antenna works optimally in the S, C and X bands, it is adequate for deep space applications, especially in low-power consumption systems. This approach would be ideal for constellations of Cubesat explorers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.