As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Worm-like ransomware strains spread quickly to critical systems such as IoMT without human interaction. Therefore, detecting different worm-like ransomware attacks during their spread is vital. Nevertheless, the low detection rate due to the imbalanced ransomware data and the detection systems’ disability for multiclass simultaneous detection are two apparent problems. In this work, we proposed a new approach for multi-classifying ransomware using preprocessing, resampling, and different classifiers. The proposed system uses network traffic NetFlow data, which is privacy-friendly and not heavy. In the first phase, preprocessing techniques were used on the collected and aggregated ransomware traffic, and then an optimized Synthetic Minority Oversampling Technique (SMOTE) was used for resampling the low-class samples. After that, four classifiers were applied, namely, Bayes Net, Hoeffding Tree, K-Nearest Neighbor, and a lightweight Multi-Layered Perceptron (MLP). The experimental results showed that the efficient preprocessing ensured accurate and simultaneous ransomware detection while the resampling technique improved the detection rate, F1, and PRC curve.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.