As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Mini-batch Graph Transformer (MGT), as an emerging graph learning model, has demonstrated significant advantages in semi-supervised node prediction tasks with improved computational efficiency and enhanced model robustness. However, existing methods for processing local information either rely on sampling or simple aggregation, which respectively result in the loss and squashing of critical neighbor information. Moreover, the limited number of nodes in each mini-batch restricts the model’s capacity to capture the global characteristic of the graph. In this paper, we propose LGMformer, a novel MGT model that employs a two-stage augmented interaction strategy, transitioning from local to global perspectives, to address the aforementioned bottlenecks. The local interaction augmentation (LIA) presents a neighbor-target interaction Transformer (NTIformer) to acquire an insightful understanding of the co-interaction patterns between neighbors and the target node, resulting in a locally effective token list that serves as input for the MGT. In contrast, global interaction augmentation (GIA) adopts a cross-attention mechanism to incorporate entire graph prototypes into the target node representation, thereby compensating for the global graph information to ensure a more comprehensive perception. To this end, LGMformer achieves the enhancement of node representations under the MGT paradigm. Experimental results related to node classification on the ten benchmark datasets demonstrate the effectiveness of the proposed method. Our code is available at unmapped: uri https://github.com/l-wd/LGMformer.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.