Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abdullah, Saleem | Aslam, Muhammad | Khan, Tazeem Ahmed | Naeem, Muhammad
Affiliations: Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan | Deanship of Preparatory Years, Umm al Qurrra University, Makkah, Saudi Arabia
Note: [] Corresponding author. Saleem Abdullah, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan. E-mail: [email protected]
Abstract: Using the notions of belonging (∈) and quasi-k-coincidence (qk) of a fuzzy point with a fuzzy set, we define the concepts of $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy normal subgroups and $(\overline{\in }, \overline{\in } \vee \overline{q_{k}})$-fuzzy cosets which is a generalization of fuzzy normal subgroups, fuzzy coset, $(\overline{\in}, \overline{\in} \vee \overline{q})$-fuzzy normal subgroups and $(\overline{\in}, \overline{\in} \vee \overline{q})$-fuzzy cosets. We give characterizations of an $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy normal subgroup and $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy coset, and deal with several related properties. The important achievement of the study with an $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy normal subgroup and $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy cosets is the generalization of that the notions of fuzzy normal subgroups, fuzzy coset, $(\overline{\in} ,\overline{\in} \vee \overline{q})$-fuzzy normal subgroups and $(\overline{\in}, \overline{\in} \vee \overline{q})$-fuzzy cosets. We prove that the set of all $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy cosets of G is a group, where the multiplication is defined by $\overleftarrow{f_{x}}\cdot \overleftarrow{f_{y}} = \overleftarrow{f_{xy}}$ for all $x,y\in G.$ If $\widetilde{f}:F \rightarrow [0,1]$ is defined by $\widetilde{f}(\overleftarrow{f_{x}}) = f(x) $ for all $x\in G.$ Then $\widetilde{f}$ is a fuzzy normal subgroup of F.
Keywords: Group, fuzzy normal subgroup, fuzzy coset, $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy normal subgroup, $(\overline{\in}, \overline{\in} \vee \overline{q_{k}})$-fuzzy coset
DOI: 10.3233/IFS-2012-0612
Journal: Journal of Intelligent & Fuzzy Systems, vol. 25, no. 1, pp. 37-47, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]