As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Perception of emotions and adequate responses are key factors of a successful conversational agent. However, determining emotions in a healthcare setting depends on multiple factors such as context and medical condition. Given the increase of interest in conversational agents integrated in mobile health applications, our objective in this work is to introduce a concept for analyzing emotions and sentiments expressed by a person in a mobile health application with a conversational user interface. The approach bases upon bot technology (Synthetic intelligence markup language) and deep learning for emotion analysis. More specifically, expressions referring to sentiments or emotions are classified along seven categories and three stages of strengths using treebank annotation and recursive neural networks. The classification result is used by the chatbot for selecting an appropriate response. In this way, the concerns of a user can be better addressed. We describe three use cases where the approach could be integrated to make the chatbot emotion-sensitive.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.