As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We explore the impact of data source on word representations for different NLP tasks in the clinical domain in French (natural language understanding and text classification). We compared word embeddings (Fasttext) and language models (ELMo), learned either on the general domain (Wikipedia) or on specialized data (electronic health records, EHR). The best results were obtained with ELMo representations learned on EHR data for one of the two tasks(+7% and +8% of gain in F1-score).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.