As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Current high-throughput sequencing technologies allow us to acquire entire genomes in a very short time and at a relatively sustainable cost, thus resulting in an increasing diffusion of genetic test capabilities, in specialized clinical laboratories and research centers. In contrast, it is still limited the impact of genomic information on clinical decisions, as an effective interpretation is a challenging task. From the technological point of view, genomic data are big in size, have a complex granular nature and strongly depend on the computational steps of the generation and processing workflows. This article introduces our work to create the openEHR Genomic Project and the set of genomic information models we developed to catch such complex structure and to preserve data provenance efficiently in a machine-readable format. The models support clinical actionability of data, by improving their quality, fostering interoperability and laying the basis for re-usability.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.