As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Reducing passenger flow through highly frequented bottlenecks in public transportation networks is a well-known urban planning problem. This issue has become even more relevant since the outbreak of the SARS-CoV-2 pandemic and the necessity for minimum distances between passengers. We propose an approach that allows to dynamically navigate passengers around dangerously crowded stations to better distribute the passenger load across an entire urban public transport network. This is achieved through the introduction of new constraints into routing requests, that enable the avoidance of specific nodes in a network. These requests consider walks, bikes, metros, subways, trams and buses as possible modes of transportation. An implementation of the approach is provided in cooperation with the Munich Travel Corporation (MVG) for the city of Munich, to simulate the effects on a real city’s urban traffic flow. Among other factors, the impact on the travel time was simulated given that the two major exchange points in the network were to be avoided. With an increase from 26.5 to 26.8 minutes on the average travel time, the simulation suggests that the time penalty might be worth the safety benefits.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.