A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization
Abstract
:1. Introduction
2. Microgrid Structure
2.1. Renewable Energy Generation System and HESS Structure
2.2. The Principle of Smooth Control Strategy of the HESS
3. The Objective Function of HESS
3.1. Objective Function
3.2. Constraint Condition
4. Using PSO to Solve Multi-Objective Functions
4.1. Adaptive Weighted PSO
4.2. Worst Particle Elimination Strategy
4.3. Multi-Objective Function Fitting
4.4. Solving Multi-Objective Functions
5. Experimental Results and Analysis
5.1. Analysis of Experimental Results of Economic Benefit
5.2. Analysis of Experimental Results of Fluctuating Power Fluctuations in Renewable Energy Sources
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.Y.; Li, M. Power balance control strategy of hybrid-bus Microgrid. J. Cent. South Univ. 2016, 6, 2331–2338. [Google Scholar]
- Chong, L.W.; Wong, Y.W.; Rajkumar, R.K.; Rajkumar, R.K.; Isa, D. Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems. Renew. Sustain. Energy Rev. 2016, 66, 174–189. [Google Scholar] [CrossRef]
- Hou, S.Y.; Bi, X.H.; Sun, T.; Mao, R.; Yu, H.W. Control strategy of hybrid energy storage under islanding operation state. J. Electr. Mach. Control. 2017, 21, 15–22. [Google Scholar]
- Liu, C.Y.; Wang, X.L.; Liu, S.M.; Zhu, Z.P.; Wu, X.; Duan, J.; Hou, F.; Xie, L.H. Microgrid economic dispatch model considering battery life. Electr. Power Autom. Equip. 2015, 35, 29–36. [Google Scholar]
- Yang, J.; Zhou, Y. Research on Optimal Configuration of Hybrid Energy Storage Capacity in Independent Wind Power Generation. Power Syst. Prot. Control 2013, 4, 38–44. [Google Scholar]
- Peng, S.M.; Cao, Y.F.; Cai, X. Mode and Control Strategy of Large Battery Energy Storage System Accessing Micro-grid. Autom. Electr. Power Syst. 2011, 35, 38–43. [Google Scholar]
- Del Granado, P.C.; Pang, Z.; Wallace, S.W. Synergy of smart grids and hybrid distributed generation on the value of energy storage. Appl. Energy 2016, 170, 476–488. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Jia, L.H.; Wang, Y.S. Basic Principles of Micro-grid Structure Design. Adv. Technol. Electr. Eng. Energy 2015, 34, 44–63. [Google Scholar]
- Choi, J.W.; Heo, S.Y.; Kim, M.K. Hybrid operation strategy of wind energy storage system for power grid frequency regulation. IET Gener. Transm. Distrib. 2016, 10, 736–749. [Google Scholar] [CrossRef]
- Jing, W.; Lai, C.H.; Wong, S.H.; Wong, M.L. Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: A review. IET Renew. Power Gener. 2017, 11, 461–469. [Google Scholar] [CrossRef]
- Li, W.H.; Xu, C.; Yu, H.B.; Gu, Y.J.; Hu, S.D.; He, X.N. Frequency Dividing Coordinated Control Strategy for Hybrid Energy Storage System of DC Micro-Grid. Trans. China Electrotech. Soc. 2016, 31, 84–92. [Google Scholar]
- Chen, Z.Y. Optimal Smoothing Control Strategy of Virtual Energy Storage System in Micro-grid Based on Continuous State Constraints. Power Syst. Technol. 2017, 41, 55–63. [Google Scholar]
- Liu, J.; Lei, Z. Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations. Energies 2016, 9, 991. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.Q.; Zhang, Y.C. A Hierarchical Optimal Operation Strategy of Hybrid Energy Storage System in Distribution Networks with High Photovoltaic Penetration. Energies 2018, 11, 389. [Google Scholar] [CrossRef]
- Mesbahi, T.; Rizoug, N.; Bartholomeüs, P.; Sadoun, R.; Khenfri, F.; Le Moigne, P. Optimal Energy Management For a Li-Ion Battery/Supercapacitor Hybrid Energy Storage System Based on Particle Swarm Optimization Incorporating Nelder-Mead Simplex Approach. IEEE Trans. Intell. Veh. 2017, 2, 99–110. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, F.; Zhang, H.; Liang, J.; Yang, L.; Song, G. Optimal Control Strategy and Capacity Planning of Hybrid Energy Storage System for Improving AGC Performance of Thermal Power Units. Autom. Electr. Power Syst. 2016, 40, 38–45. [Google Scholar]
- Kerdphol, T.; Fuji, K.; Mitani, Y.; Watanabe, M.; Qudaih, Y. Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids. Int. J. Electr. Power Energy Syst. 2016, 81, 32–39. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Wang, W.; Yang, J.; Jing, T. Scheduling optimization for rural micro energy grid multi-energy flow based on improved crossbreeding particle swarm algorithm. Trans. Chin. Soc. Agric. Eng. 2017, 33, 157–164. [Google Scholar]
- Liu, H.R.; Zhang, C.K.; Liu, S.D.; Ma, H.X.; Yi, F.Y. Plug-in Hybrid Electric Vehicle (PHEV) Energy Management Strategy Based on Improved Chaotic Particle Swarm Optimization (ICPSO). Automob. Appl. Technol. 2016, 118, 97. [Google Scholar]
- Ohatkar, S.N.; Bormane, D.S. Hybrid channel allocation in cellular network based on genetic algorithm and particle swarm optimisation methods. IET Commun. 2016, 10, 1571–1578. [Google Scholar] [CrossRef]
- Xiong, M.; Gao, F.; Liu, K.; Chen, S.; Dong, J. Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control. Energies 2015, 8, 8020–8051. [Google Scholar] [CrossRef]
- Chong, L.W.; Wong, Y.W.; Rajkumar, R.K.; Isa, D. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System. J. Power Sources 2016, 331, 553–565. [Google Scholar] [CrossRef]
Parameter Name | Parameter Symbol | Parameter Values |
---|---|---|
Battery voltage | 70–85 V | |
Supercapacitor voltage | 60–75 V | |
DC Bus Voltage | 120 V | |
The maximum output power of a battery | 800 W | |
The maximum output power of supercapacitor | 2000 W | |
Transmission efficiency | 0.95 | |
Sampling frequency | 40 kHz | |
Switching frequency | 10 kHz | |
Rated load of DC bus | 3000 W |
Parameter Name | Traditional | Optimized |
---|---|---|
Equivalent discharge cycles of accumulators in 1 load cycles | 3.2 | 1.8 |
Equivalent discharge cycles of ultracapacitor in 1 load cycles | 5.4 | 7.4 |
Replacement times of battery in the whole lifecycle | 3.6 | 1.5 |
Replacement of super capacitor during the whole lifecycle | 0.2 | 0.3 |
Charge per batch of battery per batch/yuan | 1592 | 1592 |
Cost per unit of supercapacitor per batch/yuan | 28,497 | 28,497 |
The cost/element of the battery for the whole lifecycle | 5731 | 2388 |
The cost/element of the super capacitor during the whole life cycle | 5699 | 8549 |
Cost/yuan of a HESS in the whole life cycle | 11,430 | 10,937 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Shi, X.; Liao, L.; Zhou, C.; Zhou, H.; Su, Y. A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization. Energies 2019, 12, 642. https://doi.org/10.3390/en12040642
Wu T, Shi X, Liao L, Zhou C, Zhou H, Su Y. A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization. Energies. 2019; 12(4):642. https://doi.org/10.3390/en12040642
Chicago/Turabian StyleWu, Tiezhou, Xiao Shi, Li Liao, Chuanjian Zhou, Hang Zhou, and Yuehong Su. 2019. "A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization" Energies 12, no. 4: 642. https://doi.org/10.3390/en12040642
APA StyleWu, T., Shi, X., Liao, L., Zhou, C., Zhou, H., & Su, Y. (2019). A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization. Energies, 12(4), 642. https://doi.org/10.3390/en12040642