Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images
Abstract
:1. Introduction
2. Basics of CAD systems
2.1. CAD systems and pattern recognition
2.2. Preprocessing
2.3. Feature extraction
2.3.1. Image enhancement of an object
2.3.2. Detection of initial lesion candidates
2.3.3. Image feature extraction
2.4. Classification process
2.5. Evaluation of CAD systems
3. Application examples of CAD for brain diseases
3.1. Intracranial aneurysm
Authors | Lesion enhancement | Classifier | No.cases (No.aneurysms) | Sensitivity (%) | No.FPs per case |
---|---|---|---|---|---|
Kobashi et al. [66] | Fuzzy degree | Fuzzy | 16 (19) | 100 | 6.4 |
Hayashi et al. [41] | Curvature | - | 18 (23) | - | - |
Uchiyama et al. [65] | Gradient concentrate filter | QDA* | 7 (7) | 100 | 1.9 |
Arimura et al. [26] | Hessian matrix | LDA** | 115 (61) | 97 | 3.8 |
*QDA: quadratic discriminant analysis | |||||
**LDA: linear discriminant analysis |
3.2. White matter hyperintensities in vascular dementia
Authors | Lesion enhancement | Classifier | No.cases (No.WMHs) | SI* |
---|---|---|---|---|
Anbeek et al. [75] | k-nearest neighbor | k-nearest neighbor | 19 (-) | 0.81 |
Admiraal-Behloul et al. [74] | Fuzzy C-mean algorithm | Fuzzy | 100 (100) | 0.75 |
Yamashita et al. [28] | FLAIR**-T1 difference image | ANN*** | 9 (85) | 0.74 |
*SI: similarity index | ||||
**FLAIR: fluid-attenuated inversion-recovery | ||||
***ANN: artificial neural network |
3.3. Alzheimer’s disease
Authors | Classifier | Feature | No.cases (No.AD cases) | Accuracy (%) | AUC* |
---|---|---|---|---|---|
Hirata et al. [80] | Thresholding | Z-score** | 72 (31) | 87.8 | 0.949 |
Li et al. [81] | SVM*** | Hippocampal volume | 39 (19) | 89.6 | - |
Kloppel et al. [82] | SVM | Gray matter voxels, etc. | 158 (67) | 89.0 | - |
Colliot et al. [83] | Thresholding | Hippocampal volume | 50 (25) | 84.0 | - |
Arimura et al. [27] | SVM | Cortical thickness, etc. | 54 (29) | 82.7 | 0.909 |
*AUC : area uder receiver-operating characteristic curve | |||||
**Z-score = ([control mean]−[individual value])/(controlSD) | |||||
***SVM : support vector machine |
3.4. Multiple sclerosis
Authors | Segmentation | No.cases (No.MS lesions) | SI* |
---|---|---|---|
Alfano et al. [88] | T1, T2, proton density maps | 84 (-) | - |
Boudraa et al. [89] | Fuzzy C-Means | 10 (-) | 0.62 |
Leemput et al. [90] | Stochastic model | 50 (-) | 0.51 |
Zijdenbos et al. [91] | Pipeline analysis | 29 (-) | 0.68 |
Khayati et al. [92,93] | AMM**, MRF*** | 20 (-) | 0.75 |
Yamamoto et al. [30,31] | Region growing, LSM+ | 3 (168) | 0.77 |
*SI: similarity index | |||
**AMM: adaptive mixtures method | |||
***MRF: Markov random field model | |||
+LSM: level set method |
3.5. Brain glioma
4. Conclusions
Acknowledgments
References
- Guideline for Brain Dock; Japanese Society for Detection of Asymptomatic Drain Diseases, 2008. (in Japanese).
- The World Health Report 2006. Working Together for Health; World Health Organization, 2006. (Available online: http://www.who.int/whr/2006/en/index.html).
- Filippi, M.; Campi, A.; Martinelli, V.; Colombo, B.; Scotti, G.; Comi, G. Brain and spinal cord MR in benign multiple sclerosis: a follow-up study. Journal of the Neurological Sciences 1996, 143, 143–149. [Google Scholar] [CrossRef]
- Guttmann, C.R.; Kikinis, R.; Anderson, M.C.; Jakab, M.; Warfield, S.K.; Killiany, R.J.; Weiner, H.L.; Jolesz, F.A. Quantitative follow-up of patients with multiple sclerosis using MRI: resproducibility. Journal of Magnetic Resonannce Imaging 1999, 9, 509–518. [Google Scholar] [CrossRef]
- Weiner, H.L; Guttmann, C.R; Khoury, S.J; Orav, E.J; Hohol, M.J; Kikinis, R; Jolesz, F.A. Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage. Journal of Neuroimmunology 2000, 104, 164–173. [Google Scholar] [CrossRef]
- Goldberg-Zimring, D.; Achiron, A.; Guttmann, C.R.G.; Azhari, H. Three-Dimensional analysis of the geometry of individual multiple sclerosis lesions: Detection of shape changes over time using spherical harmonics. Journal of Magnetic Resonannce Imaging 2003, 18, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.R.; Doi, K.; Chan, H.P.; Fencil, L.; Fujita, H.; Muraki, A. Automated tracking of the vascular tree in DSA images using a double-square-box region-of-search algorithm. Proc SPIE 1986, 626, 326–333. [Google Scholar]
- Chan, H-P.; Doi, K.; Galhotra, S.; Vyborny, C.J.; MacMahon, H.; Jokich, P.M. Image feature analysis and computer-aided diagnosis in digital radiography.1. Automated detection of microcalcifications in mammography. Medical Physics 1987, 14, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Giger, M.L.; Doi, K.; MacMahon, H. Image feature analysis and computer aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Medical Physics 1988, 15, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.-P.; Doi, K.; Vyborny, C.J; Schmidt, R.A.; Metz, C.E.; Lam, K.L.; Ogura, T.; Wu, Y.; MacMahon, H.; Sickles, E.A. Improvement in radiologists’ detection of clustered microcalcifications on mammograms – The potential of computer-aided diagnosis. Investigative Radiology 1990, 25, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Huo, Z.; Giger, M.L.; Vyborny, C.J.; Metz, C.E. Effectiveness of CAD in the diagnosis of breast cancer: An observer study on an independent database of mammograms. Radiology 2002, 224, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.; Wei, J.; Hadjiiski, L.M.; Sahiner, B.; Zhou, C.; Ge, J.; Shi, J.; Zhang, Y.; Chan, H.-P. Bilateral analysis based false positive reduction for computer-aided mass detection. Medical Physics 2007, 34, 3334–3344. [Google Scholar] [CrossRef] [PubMed]
- Chan, H-P.; Wei, J.; Zhang, Y.; Helvie, M.A.; Moore, R.H.; Sahiner, B.; Hadjiiski, L.; Kopans, D.B. Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. Medical Physics 2008, 35, 4087–4095. [Google Scholar]
- Arimura, H.; Katsuragawa, S.; Suzuki, K.; Li, F.; Shiraishi, J.; Doi, K. Computerized scheme for automated detection of lung nodules in lowdose CT images for lung cancer screening. Academic Radiology 2004, 11, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Katsuragawa, S.; Abe, H.; Shiraishi, J.; Li, F.; Li, Q.; Zhang, C.-T.; Suzuki, K.; Doi, K. Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Medical Physics 2003, 30, 2440–2464. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Arimura, H.; Suzuki, K.; Shiraishi, J.; Li, Q.; Abe, H.; Engelmann, R.; Sone, S.; MacMahon, H.; Doi, K. Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 2005, 237, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Li, F.; Sone, S.; Doi, K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Transactions on Medical Imaging 2005, 24, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, F.; Doi, K. Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Academic Radiology 2008, 15, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Masutani, Y.; MacEneaney, P.; Rubin, D.; Dachman, A.H. Computerized detection of polyps in CT colonography. Radiology 2002, 222, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Nappi, J.; Yoshida, H. Feature-guided analysis for reduction of false positives in CAD of polyps for CT colonography. Medical Physics 2003, 30, 1592–1601. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Yoshida, H.; Näppi, J.; Dachman, A.H. Massive-training artificial neural network (MTANN) for reduction of false positives in computer-aided detection of polyps: Suppression of rectal tubes. Medical Physics 2006, 33, 3814–3824. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Yoshida, H.; Näppi, J.; Armato, S.G., 3rd; Dachman, A.H. Mixture of expert 3D massive-training ANNs for reduction of multiple types of false positives in CAD for detection of polyps in CT colonography. Medical Physics 2008, 35, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Korogi, Y.; Arimura, H.; Katsuragawa, S.; Kitajima, M.; Yamura, M.; Yamashita, Y.; Doi, K. Intracranial aneurysms at MR angiography. Effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 2005, 237, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Kakeda, S.; Korogi, Y.; Arimura, H.; Hirai, T.; Katsuragawa, S.; Aoki, T.; Doi, K. Diagnostic accuracy and reading time to detect intracranial aneurysms on MR angiography using a computer-aided diagnosis system. American Journal of Roentgenology 2008, 190, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Arimura, H.; Li, Q.; Korogi, Y.; Hirai, T.; Abe, H.; Yamashita, Y.; Katsuragawa, S.; Ikeda, R.; Doi, K. Automated computerized scheme for detection of unruptured intracranial aneurysms in three-dimensional MRA. Academic Radiology 2004, 11, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Arimura, H.; Li, Q.; Korogi, Y.; Hirai, T.; Katsuragawa, S.; Yamashita, Y.; Tsuchiya, K.; Doi, K. Computerized detection of intracranial aneurysms for 3D MR angiography: Feature extraction of small protrusions based on a shape-based difference image technique. Medical Physics 2006, 33, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Arimura, H.; Yoshiura, T.; Kumazawa, S.; Tanaka, K.; Koga, H.; Mihara, F.; Honda, H.; Sakai, S.; Toyofuku, F.; Higashida, Y. Automated method for identification of patients with Alzheimer’s disease based on three-dimensional MR images. Academic Radiology 2008, 15, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Arimura, H.; Tsuchiya, K. Computer-aided detection of ischemic lesions related to subcortical vascular dementia on magnetic resonance images. Academic Radiology 2008, 15, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Uchiyama, Y.; Nakagawa, T.; Fukuoka, D.; Hatanaka, Y.; Hara, T.; Lee, G.N.; Hayashi, Y.; Ikedo, Y.; Gao, X.; Zhou, X. Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs. Computer Methods and Programs in Biomedicine 2008, 92, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, D.; Arimura, H.; Kakeda, S.; Magome, T.; Yamashita, Y.; Ohki, M.; Toyofuku, F.; Higashida, Y.; Korogi, Y. Computer-aided detection of multiple sclerosis lesions based on three types of blain MR images. International Journal of Computer Assisted Radiology and Surgery (CARS) 2008, 3, 202–203. [Google Scholar]
- Yamamoto, D.; Arimura, H.; Kakeda, S.; Magome, T.; Yamashita, Y.; Ohki, M.; Toyofuku, F.; Higashida, Y.; Korogi, Y. Computerized detection of multiple sclerosis lesions based on 3.0T two-dimensional magnetic resonance images. The Institute of Electronics, Information and Communication Engineers (IEICE) Technical Report 2009, MI2008-171, 505–506. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern classification, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Nagao, M.; Matsuyama, T. Edge preserving smoothing. Computer Graphics and Image Processing 1979, 9, 394–407. [Google Scholar] [CrossRef]
- Lee, Y.; Takahashi, N.; Tsai, D. Adaptive partial median filter for early CT signs of acute cerebral infarction. International Journal of Computer Assisted Radiology and Surgery 2007, 2, 105–115. [Google Scholar] [CrossRef]
- Talairach, J.; Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system-an approach to cerebral imaging; Thieme Medical Publishers: New York, NY, USA, 1988. [Google Scholar]
- Giger, M.L.; Doi, K.; MacMahon, H. Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Medical Physics 1988, 15, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Matsumoto, M.; Tateno, Y.; Iinuma, T.; Matsumoto, T. Quoit Filter - A new filter based on mathematical morphology to extract the isolated shadow, and its application to automatic detection of lung cancer in x-ray CT. International Conference on Pattern Recognition (ICPR) 1996, 2, 3. [Google Scholar]
- Sato, Y.; Nakajima, S.; Shiraga, N.; Atsumi, H.; Yoshida, S.; Koller, T.; Gerig, G.; Kikinis, R. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis 1998, 2, 143–168. [Google Scholar] [CrossRef]
- Sato, Y.; Westin, C.-F.; Bhalerao, A.; Nakajima, S.; Shiraga, N.; Tamura, S.; Kikinis, R. Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics 2000, 6, 160–180. [Google Scholar] [CrossRef]
- Li, Q.; Sone, S.; Doi, K. Selective enhancement filters for nodules, vessels, and airway wall in two- and three-dimensional CT scans. Medical Physics 2003, 30, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Masutani, Y.; Masumoto, T.; Mori, H.; Kunimatsu, A.; Abe, O.; Aoki, S.; Ohtomo, K.; Takano, N.; Matsumoto, K. Feasibility of curvature-based enhanced display system for detecting cerebral aneurysms in MR angiography. Magnetic Resonance in Medical Science 2003, 2, 29–36. [Google Scholar] [CrossRef]
- Suzuki, K.; Zhenghao, S.; Jun, Z. Supervised enhancement of lung nodules by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). In IEEE Conference Proceedings Pattern Recognition (ICPR), Tampa, FL, USA; 2008; pp. 1–4. [Google Scholar]
- Giger, M.L.; Chan, H.-P.; Boone, J. Anniversary Paper: History and status of CAD and quantitative image analysis. The role of Medical Physics and American Association of Physicists in Medicine Medical Physics 2008, 35, 5799–5820. [Google Scholar]
- Arimura, H.; Katsuragawa, S.; Suzuki, K.; Li, F.; Shiraishi, J.; Sone, S.; Doi, K. Computerized scheme for automated detection of lung nodules in low-dose CT images for lung cancer screening. Academic Radiology 2004, 11, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Hara, T.; Fujita, H.; Itoh, S.; Ishigaki, T. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Transactions on Medical Imaging 2001, 20, 595–604. [Google Scholar] [PubMed]
- Lancaster, J.L.; Woldorff, M.G.; Parsons, L.M. Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping 2000, 10, 120–131. [Google Scholar] [CrossRef]
- Toga, A.W.; Thompson, P.M. Maps of the brain. Anaomical Record 2001, 265, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.W.; Doi, K.; Kobayashi, T.; MacMahon, H.; Giger, M.L. Development of an improved CAD scheme for automated detection of lung nodules in digital chest images. Medical Physics 1997, 24 (9), 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Vincent, L.; Soile, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991, 13, 583–598. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Terzopulos, D. Snakes: active contour models. International Journal of Computer Vision 1988, 1 (4), 321–332. [Google Scholar] [CrossRef]
- Sethian, J.A. Level set methods and fast marching methods. Evolving interfaces computational geometry, fluid mechanics, computer vision, and materials science; Cambridge Monograph on Applied and Computational Mathematics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Malladi, R.; Sethian, J.A.; Vemuri, B.C. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 1995, 17, 158–175. [Google Scholar] [CrossRef]
- Zeng, X.; Staib, L.H.; Schultz, R.T.; Duncan, J.S. Segmentation and measurement of the cortex from 3-D MR images using coupled surfaces propagation. IEEE Transactions on Medical Imaging 1999, 18, 100–101. [Google Scholar]
- Deng, J.; Tsui, H.T. A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters 2002, 23, 161–169. [Google Scholar] [CrossRef]
- Magome, T.; Arimura, H.; Kakeda, S.; Yamamoto, D.; Kawata, Y.; Yamashita, Y.; Toyofuku, F.; Higashida, Y.; Ohki, M.; Korogi, Y. Automated method for segmentation of white matter and gray matter regions with multiple sclerosis in 3T MR images. The Institute of Electronics, Information and Communication Engineers (IEICE) Technical Report 2009, 108, 505–506. [Google Scholar]
- Li, Q. Improvement of bias and generalizability for computer-aided diagnostic schemes. Computerized Medical Imaging and Graphics 2007, 31, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000, 22, 4–37. [Google Scholar] [CrossRef]
- Vapnik, V.N. The nature of statistical learning theory -statistics for engineering and information science, 2nd Edition ed; Springer-Verlag: New York, NY, USA, 1999. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An introduction to support vector machines: and other kernel-based learning methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Yamashita, K.; Yoshiura, T.; Arimura, H.; Mihara, F.; Noguchi, T.; Hiwatashi, A.; Togao, O.; Yamashita, Y.; Shono, T.; Kumazawa, S.; Higashida, Y.; Honda, H. Performance evaluation of radiologists with artificial neural network for differential diagnosis of intra-axial cerebral tumors on MR images. American Journal of Neuroradiology 2008, 29, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Crum, W.R.; Camara, O.; Hill, D.L.G. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Transactions on Medical Imaging 2006, 25, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Kakeda, S.; Moriya, J.; Sato, H.; Aoki, T.; Watanabe, H.; Nakata, H.; Oda, N.; Katsuragawa, S.; Yamamoto, K.; Doi, K. Improved detection of lung nodules with aid of computerized detection method: evaluation of a commercial computer-aided diagnosis system. American Journal of Roentgenology 2004, 182, 505–510. [Google Scholar] [CrossRef] [PubMed]
- King, J.T., Jr. Epidemiology of aneurysm subarachnoid hemorrhage. Neuroimaging Clinics of North America 1997, 7, 659–668. [Google Scholar] [PubMed]
- Uchiyama, Y.; Ando, H.; Yokoyama, R.; Hara, T.; Fujita, H.; Iwama, T. Computer-aided diagnosis scheme for detection of unruptured intracranial aneurysms in MR angiography. In Proceedings of IEEE Engineering in Medicine and Biology, Shanghai, 17-18 Jan. 2006; pp. 3031–3034.
- Kobashi, S.; Kondo, K.; Hata, Y. Computer-aided diagnosis of intracranial aneurysms in MRA images with case-based reasoning. The Institute of Electronics, Information and Communication Engineers (IEICE) transactions on information and systems 2006, E89-D, 340–350. [Google Scholar] [CrossRef]
- Yamada, T.; Kadekaru, H.; Matsumoto, S. Prevalence of dementia in the older Japanese-Brazilian population. Psychiatry and Clinical Neurosciences 2002, 56, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Fazekas, F.; Offenbacher, H. Magnetic resonance imaging white matter lesions and cognitive impairment in hypertensive individuals. Archives of Neurology 1991, 48, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Breteler, M.M.; van Swieten, J.C.; Bots, M.L. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: The Rotterdam study. Neurology 1994, 44, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- DeCarli, C.; Murphy, D.G.M.; Tranh, M. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 1995, 45, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Skoog, I.; Berg, S.; Johansson, B.; Palmertz, B.; Andreasson, L.A. The influence of white matter lesions on neuropsychological functioning in demented and non-demented 85-year-olds. Acta Neurologica Scandinavica 1996, 93, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.B.; Vinitski, S.; Gonzalez, C.F.; Faro, S.H.; Lublin, F.A.; Knobler, R.; Gutierrez, J.E. Increased differentiation of intracranial white matter lesions by multispectral 3D-tissue segmentation: preliminary results. Magnetic Resonance Imaging 2001, 19, 207–218. [Google Scholar] [CrossRef]
- Anbeek, P.; Vincken, K.L.; van Osch, M.J.P.; Bisschops, R.H.C.; van der Grond, J. Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Medical Image Analysis 2004, 8, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Admiraal-Behloul, F.; van den Heuvel, D.M.J.; Olofsen, H.; van Osch, M.J.P.; van der Grond, J.; van Buchem, M.A.; Reiber, J.H.C. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. NeuroImage 2005, 28, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Yokoyama, R.; Ando, H. Computer-aided diagnosis scheme for detection of lacunar infarcts on MR images. Academic Radiology 2007, 14, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- Zhiqiang, L.; Dinggang, S.; Dengfeng, L. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Academic Radiology 2008, 15, 300–313. [Google Scholar]
- Wen, W.; Sachdev, P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. NeuroImage 2004, 22, 144–154. [Google Scholar] [CrossRef] [PubMed]
- U.S. National Institute of Health. http://www.nia.nih.gov/Alzheimers/.
- Ministry of Health, Labour and Welfare in Japan. http://www.mhlw.go.jp/index.html.
- Hirata, Y.; Matsuda, H.; Nemoto, K. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neuroscience Letter 2005, 382, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, F.; Pu, F.; Li, X.; Jiang, T.; Xie, S.; Wang, Y. Hippocampal shape analysis of Alzheimer disease based on machine learning methods. American Journal of Neuroradiology 2007, 28, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Klöppel, S.; Stonnington, C.M.; Chu, C.; Draganski, B.; Scahill, R.I.; Rohrer, J.D.; Fox, N.C.; Jack, C.R.; Ashburner, J., Jr.; Frackowiak, R.S.J. Automatic classification of MR scans in Alzheimer's disease. Brain 2008, 131, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Colliot, O.; Chételat, G.; Chupin, M.; Desgranges, B.; Magnin, B.; Benali, H.; Dubois, B.; Garnero, L.; Eustache, F.; Lehéricy, S. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 2008, 248, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Voxel-based morphometry – The methods. NeuroImage 2000, 11, 805–821. [Google Scholar] [CrossRef] [PubMed]
- Campadelli, P.; Casiraghi, E.; Artioli, D. A fully automated method for lung nodule detection from postero-anterior chest radiographs. IEEE Transactions on Medical Imaging 2006, 25, 1588–1603. [Google Scholar] [CrossRef] [PubMed]
- Golub, T.R.; Slonim, D.K.; Tamayo, P. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Joachims, T. SVMlight. Cornell University: Ithaca, NY, USA; http://svmlight.joachims.org/.
- Alfano, B.; Brunetti, A.; Larobina, M.; Quarantelli, M.; Tedeschi, E.; Ciarmiello, A.; Covelli, E.M.; Salvatore, M. Automated segmentation and measurement of global white matter lesion volume in patients with multiple sclerosis. Journal of Magnetic Resonance Imaging 2000, 12, 799–807. [Google Scholar] [CrossRef]
- Boudraa, A.O.; Dehakb, S.M.R.; Zhu, Y.M.; Pachai, C.; Bao, Y.G.; Grimaud, J. Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Computers in Biology and Medicine 2000, 30, 23–40. [Google Scholar] [CrossRef]
- Leemput, K.V.; Maes, F.; Vandermeulden, D.; Colchester, A.; Suetens, P. Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging 2001, 20, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Zijdenbos, A.P.; Forghani, R.; Evans, A.C. Automatic “Pipeline” analysis of 3-D MRI Data for clinical trials: Application to multiple sclerosis. IEEE Transactions on Medical Imaging 2002, 21, 1280–1291. [Google Scholar] [CrossRef] [PubMed]
- Khayati, R.; Vafadust, M.; Towhidkhah, F.; Nabavi, S.M. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model. Computers in Biology and Medicine 2008, 38, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Khayati, R.; Vafadust, M.; Towhidkhah, F.; Nabavi, S.M. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Computerized Medical Imaging and Graphics 2008, 32, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleki, P.; Mihara, F.; Masuda, K. Neural networks analysis of astrocytic gliomas from MRI appearances. Cancer Letters 1997, 118, 69–78. [Google Scholar] [CrossRef]
- Kobayashi, T.; Xu, X.W.; MacMahon, H. Effect of a computer-aided diagnosis scheme on radiologists’ performance in detection of lung nodules on radiographs. Radiology 1996, 199, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, K.; MacMahon, H.; Ishida, T. Effect of an artificial neural network on radiologists’ performance in the differential diagnosis of interstitial lung disease using chest radiographs. American Journal of Roentgenol 1999, 172, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Yoshida, H.; Engelmann, R. Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology 2000, 214, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Matsuki, Y.; Nakamura, K.; Watanabe, H. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. American Journal of Roentgenology 2002, 178, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Bidiwala, S.; Pittman, T. Neural network classification of pediatric posterior fossa tumors using clinical and imaging data. Pediatric Neurosurgery 2004, 40, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Ashizawa, K.; Li, F. Artificial neural networks (ANNs) for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Academic Radiology 2004, 11, 29–37. [Google Scholar] [CrossRef]
- Fukushima, A.; Ashizawa, K.; Yamaguchi, T. Application of an artificial neural network to high-resolution CT: usefulness in differential diagnosis of diffuse lung disease. American Journal of Roentgenology 2004, 183, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Matake, K.; Yoshimitsu, K.; Kumazawa, S. Usefulness of artificial neural network for differential diagnosis of hepatic masses on CT images. Academic Radiology 2006, 13, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, C.; Damayanti, G.; Pant, R.; Sreedhar, C.M. Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Computerized Medical Imaging and Graphics 2007, 31, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Hirai, T.; Katsuragawa, S.; Okuda, T.; Fukuoka, H.; Sasao, A.; Akter, M.; Awai, K.; Nakayama, Y.; Ikeda, R.; Yamashita, Y.; Yano, S.; Kuratsu, J.; Doi, K. Differentiation of common large sellar-suprasellar masses: Effect of artificial neural network on radiologists’ diagnosis performance. Academic Radiology 2009, 16, 313–320. [Google Scholar] [CrossRef] [PubMed]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arimura, H.; Magome, T.; Yamashita, Y.; Yamamoto, D. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images. Algorithms 2009, 2, 925-952. https://doi.org/10.3390/a2030925
Arimura H, Magome T, Yamashita Y, Yamamoto D. Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images. Algorithms. 2009; 2(3):925-952. https://doi.org/10.3390/a2030925
Chicago/Turabian StyleArimura, Hidetaka, Taiki Magome, Yasuo Yamashita, and Daisuke Yamamoto. 2009. "Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images" Algorithms 2, no. 3: 925-952. https://doi.org/10.3390/a2030925
APA StyleArimura, H., Magome, T., Yamashita, Y., & Yamamoto, D. (2009). Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images. Algorithms, 2(3), 925-952. https://doi.org/10.3390/a2030925