A Discussion on the Existence of Best Proximity Points That Belong to the Zero Set
Abstract
:1. Introduction and Preliminaries
- (p1)
- (p2)
- (p3)
- (p4)
- (1)
- (2)
- (m1)
- (m2)
- (m3)
- (m4)
- (1)
- convergent to if and only if
- (2)
- Cauchy sequence if and only ifexist (and are finite).
- (r1)
- (r2)
- (r3)
- (F1)
- for all
- (F2)
- F is continuous,
- (F3)
- .
2. Main Results
3. Application to Fixed Point Theory
4. Application to Graph Theory
- 2
- Let ξ and η be two vertices of a graph A path from ξ to η of length n(where in a graph G is a sequence of distinct vertices such that and for
- 3
- A graph G is called connected graph if there exist a path between any two vertices of graph G and if is connected then G is said to be weakly connected graph.
- 4
- A path is called elementary if no vertices appear more than once in it.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, K. Extensions of two fixed point Theorems of F. E. Browder. Math. Z. 1969, 112, 234–240. [Google Scholar] [CrossRef]
- Abbas, M.; Saleem, N.; De la Sen, M. Optimal coincidence point results in partially ordered nonArchimedean fuzzy metric spaces. Fixed Point Theory Appl. 2016, 2016, 44. [Google Scholar] [CrossRef] [Green Version]
- Eldred, A.A.; Veeramani, P. Existence and convergence of best proximity points. J. Math. Anal. Appl. 2006, 323, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, N.; Karapinar, E.; Sadarangani, K. A generalization for the best proximity point of Geraghty-contractions. J. Inequalities Appl. 2013, 2013, 286. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.E.; Erhan, I.M. Best Proximity Point on Different Type Contractions. Appl. Math. Inf. Sci. 2011, 3, 342–353. [Google Scholar]
- Karapinar, E. Fixed point theory for cyclic weak ϕ-contraction. Appl. Math. Lett. 2011, 24, 822–825. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. Best proximity points of Kannan type cylic weak φ-contractions in ordered metric spaces. Analele Stiintifice Universitatii Ovidius Constanta 2012, 20, 51–64. [Google Scholar] [CrossRef]
- Mongkolkeha, C.; Cho, Y.J.; Kumam, P. Best proximity points for generalized proximal contraction mappings in metric spaces with partial orders. J. Inequalities Appl. 2013, 2013, 534127. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.G. Partial metric topology. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Karapinar, E.; Erhan, I.; Ozturk, A. Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 2013, 57, 2442–2448. [Google Scholar] [CrossRef]
- Karapinar, E.; Chi, K.P.; Thanh, T.D. A generalization of Ciric quasi-contractions. Abstr. Appl. Anal. 2012, 2012, 518734. [Google Scholar] [CrossRef] [Green Version]
- Chi, K.P.; Karapinar, E.; Thanh, T.D. A Generalized Contraction Principle in Partial Metric Spaces. Math. Comput. Model. 2012, 55, 1673–1681. [Google Scholar] [CrossRef]
- Karapinar, E.; Erhan, I.M.; Ulus, A.Y. Fixed Point Theorem for Cyclic Maps on Partial Metric Spaces. Appl. Math. Inf. Sci. 2012, 6, 239–244. [Google Scholar]
- Chi, K.P.; Karapinar, E.; Thanh, T.D. On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces. Bull. Iranian Math. Soc. 2013, 39, 369–381. [Google Scholar]
- Shatanawi, W.; Postolache, M. Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, 2013, 54. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, A.; Vetro, P. Fixed point results on metric and partial metric spaces via simulation functions. J. Nonlinear Sci. Appl. 2015, 8, 1059–1069. [Google Scholar] [CrossRef]
- Oltra, S.; Valero, O. Banach’s fixed point theorem for partial metric spaces. Rend. Istit. Mat. Univ. Trieste 2004, 36, 17–26. [Google Scholar]
- Rus, I.A. Fixed point theory in partial metric spaces. Univ. Vest. Timis. Ser. Mat. Inform. 2008, 46, 41–160. [Google Scholar]
- Asadi, M.; Karapinar, E.; Salimi, P. New extension of p-metric spaces with fixed points results on M-metric spaces. J. Inequalities Appl. 2014, 2014, 18. [Google Scholar] [CrossRef] [Green Version]
- Patle, P.R.; Patel, D.K.; Aydi, H.; Gopal, D.; Mlaiki, N. Nadler and Kannan type set valued mappings in M-metric spaces and an application. Mathematics 2019, 7, 373. [Google Scholar] [CrossRef] [Green Version]
- Asadi, M.; Azhini, M.; Karapinar, E.; Monfared, H. Simulation Functions Over M-Metric Spaces. East Asian Math. J. 2017, 33, 559–570. [Google Scholar]
- Jleli, M.; Samet, B.; Vetro, C. Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces. J. Inequalities Appl. 2014, 2014, 426. [Google Scholar] [CrossRef] [Green Version]
- Kumrod, P.; Sintunavara, W. A new contractive condition approach to φ-fixed point results in metric spaces and its applications. J. Comput. Appl. Math. 2017, 311, 194–204. [Google Scholar] [CrossRef]
- Asadi, M. Discontinuity of control function in the (F,φ,θ)-contraction in metric spaces. Filomat 2017, 31, 17. [Google Scholar] [CrossRef]
- Imdad, M.; Khan, A.R.; Saleh, H.N.; Alfaqih, W.M. Some φ-fixed point results for (F,φ,α−ψ)-contractive type mappings with applications. Mathematics 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Samet, B.; Karapinar, E.; O’regan, D. On the existence of fixed points that belong to the zero set of a certain function. Fixed Point Theory Appl. 2015, 2015, 152. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Clui-Napoca, Romania, 2001. [Google Scholar]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapınar, E.; Abbas, M.; Farooq, S. A Discussion on the Existence of Best Proximity Points That Belong to the Zero Set. Axioms 2020, 9, 19. https://doi.org/10.3390/axioms9010019
Karapınar E, Abbas M, Farooq S. A Discussion on the Existence of Best Proximity Points That Belong to the Zero Set. Axioms. 2020; 9(1):19. https://doi.org/10.3390/axioms9010019
Chicago/Turabian StyleKarapınar, Erdal, Mujahid Abbas, and Sadia Farooq. 2020. "A Discussion on the Existence of Best Proximity Points That Belong to the Zero Set" Axioms 9, no. 1: 19. https://doi.org/10.3390/axioms9010019