Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrological Model
2.2. Data for Model Inputs
2.2.1. Meteorological Forcing Data
2.2.2. Vegetation Dataset
2.2.3. Soil Dataset
2.3. Data for Model Evaluation
2.3.1. Streamflow
2.3.2. Evapotranspiration
2.3.3. Soil Moisture (SM)
2.4. Parameter Calibration and Transfer Scheme
2.4.1. Parameter Calibration
2.4.2. Parameter Transfer
3. Results
3.1. Runoff Calibration and Validation
3.2. ET Evaluation
3.3. SM Evaluation
4. Discussion
4.1. Reliability of the Modeling
4.2. Potential Extension with CLDAS and RS Data
4.3. Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Kirchner, J.W. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Lee, K.; Gao, H.; Huang, M.; Sheffield, J.; Shi, X. Development and Application of Improved Long-Term Datasets of Surface Hydrology for Texas. Adv. Meteorol. 2017, 2017, 8485130. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, X.; Liang, S.; Zhu, B.; Yao, Y.; Meng, S.; Lu, C. Quantifying the response of potential flooding risk to urban growth in Beijing. Sci. Total Environ. 2020, 705, 135868. [Google Scholar] [CrossRef]
- Zhu, C.; Lettenmaier, D.P. Long-Term Climate and Derived Surface Hydrology and Energy Flux Data for Mexico: 1925–2004. J. Clim. 2007, 20, 1936–1946. [Google Scholar] [CrossRef]
- Scherer, L.; Venkatesh, A.; Karuppiah, R.; Pfister, S. Large-scale hydrological modeling for calculating water stress indices: Implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization. Environ. Sci. Technol. 2015, 49, 4971–4979. [Google Scholar] [CrossRef]
- Troy, T.J.; Wood, E.F.; Sheffield, J. An efficient calibration method for continental-scale land surface modeling. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Cherkauer, K.A.; Bowling, L.C.; Lettenmaier, D.P. Variable infiltration capacity cold land process model updates. Glob. Planet. Chang. 2003, 38, 151–159. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Jin, J.; Weinberg, J.; Bao, Z.; Liu, C.; Liu, Y.; Yan, X.; Xiaomeng, S.; Ran, Z. Impacts of Climate Change on Water Resources in the Yellow River Basin and Identification of Global Adaptation Strategies. Mitig. Adapt. Strategies Glob. Chang. 2017, 22, 67–83. [Google Scholar] [CrossRef]
- Niu, J.; Sivakumar, B.; Chen, J. Impacts of increased CO2 on the hydrologic response over the Xijiang (West River) basin, South China. J. Hydrol. 2013, 505, 218–227. [Google Scholar] [CrossRef]
- Rajib, A.; Heather, E.; Golden, C.; Lane, R.; Wu, Q. Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions. Water Resour. Res. 2020, 56, e2019WR026561. [Google Scholar] [CrossRef]
- Rajib, A.; Merwade, V. Hydrologic Response to Future Land Use Change in the Upper Mississippi River Basin by the End of 21st Century. Hydrol. Process. 2017, 31, 3645–3661. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, F.; Duan, Q.; Zheng, J.; Liang, M.; Chen, F. Regional Parameter Estimation of the VIC Land Surface Model: Methodology and Application to River Basins in China. J. Hydrometeorol. 2007, 8, 447–468. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tang, Q.; Pan, M.; Tang, Y. A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China. J. Hydrometeorol. 2014. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhang, J.Y.; Jin, J.L.; Pagano, T.C.; Calow, R.; Bao, Z.X.; Liu, C.S.; Liu, Y.L.; Yan, X.L. Assessing water resources in China using PRECIS projections and a VIC model. Hydrol. Earth Syst. Sci. 2012, 16, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Lettenmaier, D.P.; Sheffield, J. Soil Moisture Drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Mo, X.; Wu, J.J.; Wang, Q.; Zhou, H. Variations in water storage in China over recent decades from GRACE observations and GLDAS. Nat. Hazards Earth Syst. Sci. 2016, 16, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob. Planet. Chang. 2015, 131, 63–72. [Google Scholar] [CrossRef]
- Dong, X.; Xi, B.; Kennedy, A.; Feng, Z.; Entin, J.K.; Houser, P.R.; Schiffer, R.A.; L’Ecuyer, T.; Olson, W.S.; Hsu, K.-L.; et al. Investigation of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative analysis of observations. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, Y.; Dong, W.; Cao, L.; Sparrow, M. A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Beven, K.J.; Beven, K.J. Preferential flows and travel time distributions: Defining adequate hypothesis tests for hydrological process models. Hydrol. Process. 2010, 24, 1537–1547. [Google Scholar] [CrossRef]
- Darracq, A.; Destouni, G.; Persson, K.; Prieto, C.; Jarsj, J. Scale and model resolution effects on the distributions of advective solute travel times in catchments. Hydrol. Process. 2010, 24, 1697–1710. [Google Scholar] [CrossRef]
- Fiori, A.; Russo, D. Numerical analyses of subsurface flow in a steep hillslope under rainfall: The role of the spatial heterogeneity of the formation hydraulic properties. Water Resour. Res. 2007, 43, 931–936. [Google Scholar] [CrossRef]
- Jiao, Y.; Lei, H.; Yang, D.; Huang, M.; Liu, D.; Yuan, X. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. J. Hydrol. 2017, 551, 116–131. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res 1994, 99, 14. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, X.; Meng, S.; Lu, C.; Yao, Y. Sensitivity of soil moisture to precipitation and temperature over China: Present state and future projection. Sci. Total Environ. 2020, 705, 135774. [Google Scholar] [CrossRef]
- Yao, Y.; Xie, X.; Meng, S.; Zhu, B.; Zhang, K.; Wang, Y. Extended Dependence of the Hydrological Regime on the Land Cover Change in the Three-North Region of China: An Evaluation under Future Climate Conditions. Remote Sens. 2019, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Alok, K.; Sahoo, T.J.; Troy, R.K.; Vinukollu, J.S.; Eric, F.W. Multisource Estimation of Long-Term Terrestrial Water Budget for Major Global River Basins. J. Clim. 2012, 25, 3191–3206. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Modeling Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Cislaghi, A.; Masseroni, D.; Massari, C.; Camici, S.; Brocca, L. Combining a rainfall–runoff model and a regionalization approach for flood and water resource assessment in the western Po Valley, Italy. Hydrol. Sci. J. 2020, 65, 348–370. [Google Scholar] [CrossRef]
- Neri, M.; Parajka, J.; Toth, E. Importance of the informative content in the study area when regionalising rainfall-runoff model parameters: The role of nested catchments and gauging station density. Hydrol. Earth Syst. Sci. 2020, 24, 5149–5171. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, A. A daily 0.25° × 0.25° hydrologically based land surface flux dataset for conterminous China, 1961–2017. J. Hydrol. 2020, 590, 125413. [Google Scholar] [CrossRef]
- Shi, C.X.; Xie, Z.H.; Hui, Q.; Liang, M.L.; Yang, X.C. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Umair, M.; Kim, D.; Ray, R.L.; Choi, M. Estimating land surface variables and sensitivity analysis for CLM and VIC simulations using remote sensing products. Sci. Total Environ. 2018, 633, 470–483. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Wei, Y.; Peel, M.C.; Western, A.W. The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff. Adv. Water Resour. 2015, 83, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Liang, X.; McCarthy, H.R. VIC+ for water-limited conditions: A study of biological and hydrological processes and their interactions in soil-plant-atmosphere continuum. Water Resour. Res. 2013, 49, 7711–7732. [Google Scholar] [CrossRef]
- Haddeland, I.; Skaugen, T.; Lettenmaier, D.P. Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci. Discuss. 2007, 3, 2899–2922. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Xie, Z. A new surface runoff parameterization with subgrib-scale soil heterogeneity for land surface models. Adv. Water Resour. 2001, 24, 1173–1193. [Google Scholar] [CrossRef]
- Shepard, D.S. Computer Mapping: The SYMAP Interpolation Algorithm. In Spatial Statistics and Models; Gaile, G.L., Willmott, C.J., Eds.; Springer: Dordrecht, The Netherlands, 1984; pp. 133–145. [Google Scholar] [CrossRef]
- Xie, X.; Cui, Y. Development and Test of Swat for Modeling Hydrological Processes in Irrigation Districts with Paddy Rice. J. Hydrol. 2011, 396, 61–71. [Google Scholar] [CrossRef]
- Xie, X.; Liang, S.; Yao, Y.; Jia, K.; Meng, S.; Li, J. Detection and Attribution of Changes in Hydrological Cycle over the Three-North Region of China: Climate Change Versus Afforestation Effect. Agric. Forest Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Hanes, J.M.; Schwartz, M.D. Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature. Theor. Appl. Climatol. 2010, 105, 37–50. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2013, 52, 209–223. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Yang, X.; Song, J. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived From MODIS and AVHRR Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Soulis, K.X.; Londra, P.A.; Kargas, G. Characterizing surface soil layer saturated hydraulic conductivity in a Mediterranean natural watershed. Hydrol. Sci. J. 2020, 65, 2616–2629. [Google Scholar] [CrossRef]
- Meyerhoff, S.B.; Maxwell, R.M. Quantifying the effects of subsurface heterogeneity on hillslope runoff using a stochastic approach. Hydrogeol. J. 2011, 19, 1515–1530. [Google Scholar] [CrossRef]
- Nijssen, B.; Schnur, R.; Lettenmaier, D.P. Global Retrospective Estimation of Soil Moisture Using the Variable Infiltration Capacity Land Surface Model, 1980–1993. J. Clim. 1999, 14, 1790–1808. [Google Scholar] [CrossRef]
- Nijssen, B.; Lettenmaier, D.P.; Lohmann, D.; Wood, E.F. Predicting the Discharge of Global Rivers. J. Clim. 2000, 14, 3307–3323. [Google Scholar] [CrossRef]
- Bohn, T.J.; Vivoni, E.R. Process-based characterization of evapotranspiration sources over the North American monsoon region. Water Resour. Res. 2016, 52, 358–384. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhan, X.; Zheng, Y.; Hain, C.R.; Ek, M.; Wen, J.; Fang, L.; Liu, J. Improving Noah land surface model performance using near real time surface albedo and green vegetation fraction. Agric. For. Meteorol. 2016, 218, 171–183. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, S.; Liu, S.; Yuan, W.; Xiao, Z.; Liu, Q.; Cheng, J.; Zhang, X.; Tang, H.; Zhang, X.; et al. The Global Land Surface Satellite (GLASS) Remote Sensing Data Processing System and Products. Remote Sens. 2013, 5, 2436–2450. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liang, S.; Li, X.; Yang, H.; Fisher, J.B.; Zhang, N.; Chen, J.; Jie, C.; Zhao, S.; Zhang, X. Bayesian multi-model estimation of global terrestrial latent heat flux from eddy covariance, meteorological and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Chen, J.; Wang, K.; Jia, K.; Cheng, J.; Jiang, B.; Fisher, J.B.; Mu, Q.; et al. A satellite-based hybrid algorithm to determine the Priestley-Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sens. Environ. 2015, 165, 216–233. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Gao, Q.; Wang, S.; Su, Z. Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 17–27. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.; Liu, S.; Lin, Z.; Hu, S. Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981–2010. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 110–121. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Bennett, K.E.; Urrego Blanco, J.R.; Jonko, A.; Bohn, T.J.; Atchley, A.L.; Urban, N.M.; Middleton, R.S. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin. Water Resour. Res. 2018, 54, 132–149. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Zwieback, S.; Xaver, A.; Wagner, W. Characterizing Coarse-Scale Representativeness of in situ Soil Moisture Measurements from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.; Zhao, Y.; Ke, Z. Validation of the ESA CCI soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [Google Scholar] [CrossRef]
- Gou, J.; Miao, C.; Duan, Q.; Tang, Q.; Di, Z.; Liao, W.; Wu, J.; Zhou, R. Sensitivity Analysis-Based Automatic Parameter Calibration of the Vic Model for Streamflow Simulations over China. Water Resour. Res. 2020, 56, e2019WR025968. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, K.E. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Melsen, L.A.; Teuling, A.J.; Torfs, P.J.J.F.; Uijlenhoet, R.; Mizukami, N.; Clark, M.P. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models. Hydrol. Earth Syst. Sci. 2016, 20, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process. 1995, 9. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhenghui, X.; Yan, Y.; Shuang, L.; Linying, W.; Jing, Z.; Peihua, Q.; Binghao, J. Effects of Anthropogenic Water Regulation and Groundwater Lateral Flow on Land Processes. J. Adv. Modeling Earth Syst. 2016, 8, 1106–1131. [Google Scholar] [CrossRef]
- Zeng, Y.; Xie, Z.; Liu, S.; Xie, J.; Jia, B.; Qin, P.; Gao, J. Global Land Surface Modeling Including Lateral Groundwater Flow. J. Adv. Modeling Earth Syst. 2018, 10, 1882–1900. [Google Scholar] [CrossRef]
- Wen, Z.; Liang, X.; Yang, S. A new multiscale routing framework and its evaluation for land surface modeling applications. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Meng, S.; Xie, X.; Liang, S. Assimilation of soil moisture and streamflow observations to improve flood forecasting with considering runoff routing lags. J. Hydrol. 2017, 550, 568–579. [Google Scholar] [CrossRef]
- Li, H.; Wigmosta, M.S.; Wu, H.; Huang, M.; Ke, Y.; Coleman, A.M.; Leung, L.R. A Physically Based Runoff Routing Model for Land Surface and Earth System Models. J. Hhttpydrometeorol. 2013, 14, 808–828. [Google Scholar] [CrossRef]
Dataset | Resolution | Stations | Period |
---|---|---|---|
Model inputs | |||
CMA meteorological forcing | 2481 | 1970–2016 | |
Landsat TM land cover | 1 km | ||
GLASS LAI | 1 km | 2000–2015 | |
Soil database | 30 × 30 arc-second | ||
Calibration and Validation | |||
Streamflow stations | 29 | 1970–2014 | |
GLASS ET | 0.05 degree | 2000–2015 | |
Covariance tower stations | 33 | 2000–2013 | |
ESA-CCI SM | 0.25 degree | 1978–2013 | |
CMA SM in-situ stations | 66 | 1990–2014 |
Climate Zones | Description | Criterion |
---|---|---|
A | Equatorial climate | Tmin ≥ +18 °C |
Bk | Dry, cold climate | Tann < +18 °C |
C | Rainy, mid-latitude climate | −3 °C< Tmin < +18 °C |
Da | Continental climate with hot summer | Tmax ≥ +22 °C |
Db | Continental climate with cool summer | Tmin ≤ −3 °C not (a) and at least 4 Tmon ≥ +10 °C |
Dc | Continental climate with short cool summer | not (Bk) and Tmin > −38 °C |
E | Polar climate | Tmax < +10 °C |
Location | Latitude | Longitude | Climate Zone | Period | R | NSE | Bias | KGE |
---|---|---|---|---|---|---|---|---|
Calibration | ||||||||
Yamadu | 43.62 | 81.8 | Bk | 2006–2008 | 0.91 | 0.59 | 7.59% | 0.71 |
Dingjiagou | 37.55 | 110.25 | Bk | 1970–1986 | 0.47 | 0.26 | −20.70% | 0.07 |
Bengbu | 32.93 | 117.38 | C1 | 1970–1986 | 0.82 | 0.65 | −2.78% | 0.43 |
Tsuuang | 36.03 | 114.52 | C1 | 1970–1979 | 0.89 | 0.76 | −18.50% | 0.38 |
Heishiguan | 34.71 | 112.93 | C1 | 1980–1982 | 0.91 | 0.72 | 25.40% | 0.37 |
Jian | 27.1 | 114.98 | C2 | 1980–1982 | 0.86 | 0.75 | −4.86% | 0.39 |
Ankang | 32.68 | 109.01 | C2 | 1980–1982 | 0.94 | 0.79 | 37.70% | 0.63 |
Gongtan | 28.9 | 108.35 | C2 | 1980–1982 | 0.89 | 0.74 | −11.20% | 0.23 |
Hoiyang | 23.17 | 114.3 | C3 | 1970–1982 | 0.92 | 0.74 | −3.54% | 0.78 |
Wuzhou | 23.48 | 111.3 | C3 | 1970–1984 | 0.92 | 0.79 | 12.80% | 0.86 |
Nanning | 22.8 | 108.36 | C3 | 1970–1983 | 0.87 | 0.74 | 13.60% | 0.75 |
Shenyang | 41.46 | 123.24 | Da | 1970–1978 | 0.97 | 0.77 | 25.60% | 0.62 |
Jilin | 43.88 | 126.53 | Da | 1980–1983 | 0.85 | 0.56 | −7.61% | 0.74 |
Phujym | 45.1 | 124.49 | Da | 1977–1979 | 0.68 | 0.26 | 1.23% | 0.45 |
Tsyamusy | 46.5 | 130.2 | Db | 1970–1978 | 0.86 | 0.69 | −3.84% | 0.84 |
Shetang | 34.55 | 105.97 | Db | 1978–1988 | 0.78 | 0.58 | 12.40% | 0.75 |
Maojiahe | 35.52 | 107.58 | Db | 1978–1982 | 0.84 | 0.61 | 28.60% | 0.71 |
Yangcun | 29.3 | 91.96 | E | 1971–1975 | 0.88 | 0.6 | −6.77% | 0.73 |
Changdu | 31.18 | 97.18 | E | 1975–1982 | 0.94 | 0.82 | 7.04% | 0.82 |
Lasa | 29.63 | 91.15 | E | 1973–1975 | 0.93 | 0.81 | 5.26% | 0.84 |
Validation | ||||||||
Zhangjiashan | 34.63 | 108.60 | Bk, Db | 1980–1982 | 0.91 | 0.67 | 40.5% | 0.68 |
Zhanjiafeng | 40.37 | 116.47 | Da, Db | 1970–1979 | 0.85 | 0.69 | 4.29% | 0.54 |
Dalinghe | 41.41 | 121.00 | Da, Db | 1970–1979 | 0.91 | 0.76 | −6.97% | 0.83 |
Chiling | 42.20 | 123.50 | Da, Db | 1970–1979 | 0.71 | 0.31 | 9.85% | 0.01 |
Luanxian | 39.73 | 118.75 | Da, Db | 1970–1983 | 0.91 | 0.79 | 9.69% | 0.72 |
Haerbin | 45.77 | 126.58 | Da, Dc | 1970–1983 | 0.78 | 0.51 | −9.87% | 0.74 |
Hengshi | 23.85 | 113.27 | C3 | 1976–1979 | 0.95 | 0.87 | 15.5% | 0.83 |
Qianxinzhuang | 40.32 | 116.55 | Db | 2006–2014 | 0.65 | 0.34 | 6.90% | 0.05 |
Boyachang | 40.40 | 116.65 | Db | 2006–2014 | 0.84 | 0.68 | 9.76% | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Xie, X.; Lu, C.; Lei, T.; Wang, Y.; Jia, K.; Yao, Y. Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations. Remote Sens. 2021, 13, 1247. https://doi.org/10.3390/rs13071247
Zhu B, Xie X, Lu C, Lei T, Wang Y, Jia K, Yao Y. Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations. Remote Sensing. 2021; 13(7):1247. https://doi.org/10.3390/rs13071247
Chicago/Turabian StyleZhu, Bowen, Xianhong Xie, Chuiyu Lu, Tianjie Lei, Yibing Wang, Kun Jia, and Yunjun Yao. 2021. "Extensive Evaluation of a Continental-Scale High-Resolution Hydrological Model Using Remote Sensing and Ground-Based Observations" Remote Sensing 13, no. 7: 1247. https://doi.org/10.3390/rs13071247