Tracking Geomagnetic Storms with Dynamical System Approach: Ground-Based Observations
Abstract
:1. Introduction
2. Data
3. Methods
4. Results and Discussions
5. Conclusions
- The dynamics of the auroral oval are that it is not a low-dimensional one, thus suggesting that this specific region cannot be described by a reduced number of degrees of freedom (i.e., variables). This result can only be highlighted by looking at ground-based geomagnetic observatories (instead of geomagnetic indices) to explore the associated latitudinal band and can be highlighted only by using a methodology that is free from any constriction on the number of observables used for the analysis. Indeed, previous results [55,56], although robust, were based on selecting a specific (embedding) dimension m and those metrics cannot be characterized by values larger than m, thus forbidding access to information on the possible unknown variables that are not included in the analysis.
- The dynamics of the auroral oval are, instead, less persistent than higher/lower latitudes. This is one of the main novelties of our analysis. On average, our results are in agreement with Vassiliadis et al. [55] and Consolini [56], who reported an increase in the predictability power (at large scales, say >200 min) of the system during a disturbed period with respect to a quiet one, as a result of the strong driver imposed by the solar wind to the geomagnetic response, at both high and mid latitudes. Furthermore, Consolini [56], by using the Kolmogorov entropy which is related to the maximum temporal horizon for which a reliable prediction of a system can be done, also reported a dramatic decrease down to 2 min of the short-term variability (<200 min) of the magnetosphere–ionosphere system during a geomagnetic storm. Here, by using the inverse persistence we show how the predictability is a matter of latitudes and not only of scales [14,56], while the average dimensions are nearly independent of geomagnetic latitude. Indeed, the lowest values are found at lower latitudes, while the highest ones are observed across the auroral oval’s boundary (60–70N), with the latter slightly decreasing during the geomagnetic storm as a result of more persistent conditions caused by the external forcing from the solar wind acting as a driver of geomagnetic fluctuations [14].
- By analyzing the daily polar-map behavior during a disturbed period, we show that higher values of the dimension are observed on days characterized by the initial phase of a magnetic storm and when a series of substorms is present. This increase in the value of the instantaneous dimension is due to the formation of an intense ring current and auroral currents affecting the magnetic field at low and high latitudes. We also show that the maximum values of the instantaneous dimension appear to be influenced by the evolution of the plasma convection cells, indicating a possible correlation with the presence and intensity of auroral electrojet currents. Regarding the daily trend of the inverse persistence , there are always three distinct zones: one for latitudes greater than 80, one with latitude values between 60 and 80 and one with latitude values less than 60. The intermediate zone, i.e., the auroral oval boundary, is the one where the index takes higher values compared to the other two zones. This structure is clear on days of low or moderate activity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merrill, R.T.; McElhinny, M.W.; McFadden, P.L.; Banerjee, S.K. The Magnetic Field of the Earth: Paleomagnetism, the Core and the Deep Mantle. Phys. Today 1997, 50, 70. [Google Scholar] [CrossRef]
- Campbell, W.H. Introduction to Geomagnetic Fields, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kamide, Y. Geomagnetic Storms as a Dominant Component of Space Weather: Classic Picture and Recent Issues. In Space Storms and Space Weather Hazards; Daglis, I.A., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 43–77. [Google Scholar] [CrossRef]
- Daglis, I.A. Space Storms, Ring Current and Space-Atmosphere Coupling. In Space Storms and Space Weather Hazards; Daglis, I.A., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 1–42. [Google Scholar] [CrossRef]
- Jordanova, V.K.; Ilie, R.; Chen, M. Ring Current Investigations. The Quest for Space Weather Prediction; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Sugiura, M. Hourly Values of equatorial Dst for the IGY. Ann. Int. Geophys. Yr. 1964, 35, 1–41. [Google Scholar]
- Turner, N.E.; Baker, D.N.; Pulkkinen, T.I.; McPherron, R.L. Evaluation of the tail current contribution to Dst. J. Geophys. Res. 2000, 105, 5431–5440. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, S.; Nosé, M.; Rostoker, G.; Singer, H.; Lui, A.T.Y.; Nakamura, M. Storm-substorm relationship: Contribution of the tail current to Dst. J. Geophys. Res. 2001, 106, 21199–21210. [Google Scholar] [CrossRef]
- Siscoe, G.L.; McPherron, R.L.; Jordanova, V.K. Diminished contribution of ram pressure to Dst during magnetic storms. J. Geophys. Res. Space Phys. 2005, 110, A12227. [Google Scholar] [CrossRef]
- Akasofu, S.I. A Review of Studies of Geomagnetic Storms and Auroral/Magnetospheric Substorms based on the Electric Current Approach. Front. Astron. Space Sci. 2021, 7, 100. [Google Scholar] [CrossRef]
- Kamide, Y.; Rostoker, G. What Is the Physical Meaning of the AE Index? EOS Trans. 2004, 85, 188–192. [Google Scholar] [CrossRef]
- Coster, A.Y.; Erickson, P.; Lanzerotti, L. Space Weather Effects and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 5. [Google Scholar] [CrossRef]
- Borovsky, J.E. Perspective: Is Our Understanding of Solar-Wind/Magnetosphere Coupling Satisfactory? Front. Astron. Space Sci. 2021, 8, 5. [Google Scholar] [CrossRef]
- Alberti, T.; Consolini, G.; Lepreti, F.; Laurenza, M.; Vecchio, A.; Carbone, V. Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. Space Phys. 2017, 122, 4266–4283. [Google Scholar] [CrossRef] [Green Version]
- Alberti, T.; Consolini, G.; De Michelis, P.; Laurenza, M.; Marcucci, M.F. On fast and slow Earth’s magnetospheric dynamics during geomagnetic storms: A stochastic Langevin approach. J. Space Weather. Space Clim. 2018, 8, A56. [Google Scholar] [CrossRef] [Green Version]
- Alberti, T.; Faranda, D.; Consolini, G.; De Michelis, P.; Donner, R.V.; Carbone, V. Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms. Universe 2022, 8, 226. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Valdivia, J.A. The Earth’s Magnetosphere: A Systems Science Overview and Assessment. Surv. Geophys. 2018, 39, 817–859. [Google Scholar] [CrossRef] [Green Version]
- Chandorkar, M.; Camporeale, E. Chapter 9—Probabilistic Forecasting of Geomagnetic Indices Using Gaussian Process Models. In Machine Learning Techniques for Space Weather; Camporeale, E., Wing, S., Johnson, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 237–258. [Google Scholar] [CrossRef]
- Temmer, M. Space weather: The solar perspective. Living Rev. Sol. Phys. 2021, 18, 4. [Google Scholar] [CrossRef]
- Foullon, C.; Malandraki, O. (Eds.) IAU Symposium Proceedings—Space Weather of the Heliosphere: Processes and Forecasts; Cambridge University Press: Cambridge, UK, 2018; Volume 335. [Google Scholar] [CrossRef] [Green Version]
- Consolini, G.; Chang, T.; Lui, A.T. Complexity and topological disorder in the Earth’s magnetotail dynamics. In Nonequilibrium Phenomena in Plasmas; Springer: Berlin/Heidelberg, Germany, 2005; pp. 51–69. [Google Scholar] [CrossRef]
- Iyemori, T. Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomagn. Geoelectr. 1990, 42, 1249–1265. [Google Scholar] [CrossRef]
- Davis, T.N.; Sugiura, M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966, 71, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Wanliss, J.A.; Showalter, K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 2006, 111, A02202. [Google Scholar] [CrossRef]
- Wanliss, J. Fractal properties of SYM-H during quiet and active times. J. Geophys. Res. Space Phys. 2005, 110, A03202. [Google Scholar] [CrossRef]
- Richmond, A.D. Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 1995, 47, 191–212. [Google Scholar] [CrossRef]
- Gjerloev, J.W. The SuperMAG data processing technique. J. Geophys. Res. Space Phys. 2012, 117, A09213. [Google Scholar] [CrossRef]
- Lucarini, V.; Faranda, D.; Wouters, J.; Kuna, T. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems. J. Stat. Phys. 2014, 154, 723–750. [Google Scholar] [CrossRef]
- Moreira Freitas, A.C.; Milhazes Freitas, J.; Todd, M. Extremal Index, Hitting Time Statistics and periodicity. arXiv 2010, arxiv:1008.1350. [Google Scholar]
- Lucarini, V.; Faranda, D.; Wouters, J. Universal Behaviour of Extreme Value Statistics for Selected Observables of Dynamical Systems. J. Stat. Phys. 2012, 147, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, V.; Faranda, D.; de Freitas, A.C.G.M.M.; de Freitas, J.M.M.; Holland, M.; Kuna, T.; Nicol, M.; Todd, M.; Vaienti, S. Extremes and Recurrence in Dynamical Systems; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Hentschel, H.G.E.; Procaccia, I. The infinite number of generalized dimensions of fractals and strange attractors. Phys. D Nonlinear Phenom. 1983, 8, 435–444. [Google Scholar] [CrossRef]
- Moloney, N.R.; Faranda, D.; Sato, Y. An overview of the extremal index. Chaos 2019, 29, 022101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Süveges, M. Likelihood estimation of the Extremal index. Extremes 2007, 10, 41–55. [Google Scholar] [CrossRef]
- Faranda, D.; Alvarez-Castro, M.C.; Messori, G.; Rodrigues, D.; Yiou, P. The hammam effect or how a warm ocean enhances large scale atmospheric predictability. Nat. Commun. 2019, 10, 1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, P.; Messori, G.; Faranda, D.; Ward, P.J.; Coumou, D. Compound warm–dry and cold–wet events over the Mediterranean. Earth Syst. Dyn. 2020, 11, 793–805. [Google Scholar] [CrossRef]
- Faranda, D.; Vrac, M.; Yiou, P.; Jézéquel, A.; Thao, S. Changes in future synoptic circulation patterns: Consequences for extreme event attribution. Geophys. Res. Lett. 2020, 47, e2020GL088002. [Google Scholar] [CrossRef]
- Faranda, D.; Messori, G.; Yiou, P. Diagnosing concurrent drivers of weather extremes: Application to warm and cold days in North America. Clim. Dyn. 2020, 54, 2187–2201. [Google Scholar] [CrossRef]
- Giamalaki, K.; Beaulieu, C.; Faranda, D.; Henson, S.; Josey, S.; Martin, A. Signatures of the 1976–1977 regime shift in the north pacific revealed by statistical analysis. J. Geophys. Res. Ocean. 2018, 123, 4388–4397. [Google Scholar] [CrossRef]
- Alberti, T.; Daviaud, F.; Donner, R.V.; Dubrulle, B.; Faranda, D.; Lucarini, V. Chameleon attractors in turbulent flows. Chaos Solitons Fract. 2023, 168, 113195. [Google Scholar] [CrossRef]
- Alberti, T.; Faranda, D.; Donner, R.V.; Caby, T.; Carbone, V.; Consolini, G.; Dubrulle, B.; Vaienti, S. Small-scale Induced Large-scale Transitions in Solar Wind Magnetic Field. Astrophys. J. Lett. 2021, 914, L6. [Google Scholar] [CrossRef]
- Gualandi, A.; Avouac, J.P.; Michel, S.; Faranda, D. The predictable chaos of slow earthquakes. Sci. Adv. 2020, 6, eaaz5548. [Google Scholar] [CrossRef]
- Gualandi, A.; Faranda, D.; Marone, C.; Cocco, M.; Mengaldo, G. Deterministic and stochastic chaos characterize laboratory earthquakes. Earth Planet. Sci. Lett. 2023, 604, 117995. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Clúa de Gonzalez, A.L.; Tsurutani, B.T. Geomagnetic response to large-amplitude interplanetary Alfvén wave trains. Phys. Scr. Vol. T 1994, 55, 140. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Sugiura, M.; Iyemori, T.; Goldstein, B.E.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J. The nonlinear response of AE to the IMF BS driver: A spectral break at 5 h. Geophys. Res. Lett. 1990, 17, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Akasofu, S.I. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach. Space Sci. Rev. 2017, 212, 341–381. [Google Scholar] [CrossRef] [Green Version]
- De Michelis, P.; Consolini, G.; Materassi, M.; Tozzi, R. An information theory approach to the storm-substorm relationship. J. Geophys. Res. Space Phys. 2011, 116, A08225. [Google Scholar] [CrossRef]
- De Michelis, P.; Tozzi, R.; Consolini, G. Principal components’ features of mid-latitude geomagnetic daily variation. Ann. Geophys. 2010, 28, 2213–2226. [Google Scholar] [CrossRef] [Green Version]
- Alberti, T.; Piersanti, M.; Vecchio, A.; De Michelis, P.; Lepreti, F.; Carbone, V.; Primavera, L. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations. Ann. Geophys. 2016, 34, 1069–1084. [Google Scholar] [CrossRef] [Green Version]
- Carlson, H.C., Jr. Dynamics of the quiet polar cap. J. Geomagn. Geoelectr. 1990, 42, 697–710. [Google Scholar] [CrossRef]
- Emmert, J.T.; Richmond, A.D.; Drob, D.P. A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors. J. Geophys. Res. Space Phys. 2010, 115, A08322. [Google Scholar] [CrossRef] [Green Version]
- Cousins, E.D.P.; Shepherd, S.G. A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements. J. Geophys. Res. Space Phys. 2010, 115, A12329. [Google Scholar] [CrossRef]
- Vassiliadis, D.V.; Sharma, A.S.; Eastman, T.E.; Papadopoulos, K. Low-dimensional chaos in magnetospheric activity from AE time series. Geophys. Res. Lett. 1990, 17, 1841–1844. [Google Scholar] [CrossRef] [Green Version]
- Consolini, G. Chapter 7—Emergence of Dynamical Complexity in the Earth’s Magnetosphere. In Machine Learning Techniques for Space Weather; Camporeale, E., Wing, S., Johnson, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–202. [Google Scholar] [CrossRef]
Geographic Coordinates | QD Magnetic Coordinates | |||||
---|---|---|---|---|---|---|
ID | Latitude (°N) | Longitude (°E) | Latitude (°N) | Longitude (°E) | MLT | Source |
ABK | 68.36 | 18.82 | 65.55 | 100.43 | 1.49 | I |
ARS | 56.43 | 58.57 | 53.15 | 132.50 | 3.62 | I |
BEL | 51.84 | 20.79 | 47.73 | 96.01 | 1.19 | I |
BLC | 64.32 | 263.99 | 72.70 | −28.02 | 16.92 | I |
BOX | 58.07 | 38.23 | 54.64 | 113.22 | 2.34 | I |
BRD | 49.87 | 260.03 | 58.73 | −31.47 | 16.69 | I |
FCC | 58.76 | 265.91 | 67.66 | −23.97 | 17.19 | I |
FRD | 38.20 | 282.63 | 47.58 | 0.56 | 18.83 | I |
HLP | 54.61 | 18.82 | 50.80 | 94.87 | 1.12 | I |
HRN | 77.00 | 15.37 | 74.48 | 106.20 | 1.87 | I |
IQA | 63.75 | 291.48 | 71.10 | 15.65 | 19.84 | I |
IRT | 52.27 | 104.45 | 48.53 | 179.10 | 6.73 | I |
KIV | 50.72 | 30.30 | 46.73 | 104.48 | 1.76 | I |
LYC | 64.60 | 23.75 | 61.50 | 102.51 | 1.63 | I |
MGD | 60.05 | 150.73 | 54.56 | −138.48 | 9.56 | I |
NUR | 60.51 | 24.66 | 57.18 | 101.68 | 1.57 | I |
OTT | 45.40 | 284.45 | 54.32 | 3.59 | 19.03 | I |
PET | 52.97 | 158.25 | 46.93 | −131.25 | 10.04 | I |
RES | 74.69 | 265.11 | 82.08 | −31.15 | 16.72 | I |
SBL | 43.93 | 299.99 | 49.42 | 23.24 | 20.34 | I |
SPG | 60.54 | 29.72 | 57.18 | 106.15 | 1.87 | I |
SOD | 67.37 | 26.63 | 64.30 | 106.32 | 1.88 | I |
STJ | 47.60 | 307.32 | 51.36 | 31.73 | 20.91 | I |
THL | 77.47 | 290.77 | 83.78 | 26.17 | 20.54 | I |
UPS | 59.90 | 17.35 | 56.62 | 95.16 | 1.14 | I |
AMD | 69.50 | 61.40 | 66.02 | 137.82 | 3.98 | S |
BJN | 74.50 | 19.20 | 71.80 | 105.85 | 1.85 | S |
C01 | 42.42 | 276.10 | 52.22 | −8.37 | 18.23 | S |
HOP | 76.51 | 25.01 | 73.54 | 112.62 | 2.30 | S |
NAL | 78.92 | 11.95 | 76.54 | 107.11 | 1.93 | S |
NOR | 71.09 | 25.79 | 68.11 | 107.97 | 1.99 | S |
PBK | 70.10 | 170.90 | 66.04 | −126.90 | 10.33 | S |
RPB | 66.50 | 273.80 | 74.95 | −12.00 | 17.99 | S |
SOL | 61.08 | 4.84 | 58.33 | 85.18 | 0.47 | S |
T15 | 46.24 | 275.66 | 55.92 | −8.90 | 18.20 | S |
T29 | 58.30 | 291.80 | 65.80 | 14.96 | 19.79 | S |
T44 | 58.47 | 281.95 | 67.15 | 0.83 | 18.85 | S |
T47 | 62.20 | 284.35 | 70.44 | 4.83 | 19.11 | S |
T52 | 53.79 | 282.38 | 62.66 | 1.17 | 18.87 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, T.; De Michelis, P.; Santarelli, L.; Faranda, D.; Consolini, G.; Marcucci, M.F. Tracking Geomagnetic Storms with Dynamical System Approach: Ground-Based Observations. Remote Sens. 2023, 15, 3031. https://doi.org/10.3390/rs15123031
Alberti T, De Michelis P, Santarelli L, Faranda D, Consolini G, Marcucci MF. Tracking Geomagnetic Storms with Dynamical System Approach: Ground-Based Observations. Remote Sensing. 2023; 15(12):3031. https://doi.org/10.3390/rs15123031
Chicago/Turabian StyleAlberti, Tommaso, Paola De Michelis, Lucia Santarelli, Davide Faranda, Giuseppe Consolini, and Maria Federica Marcucci. 2023. "Tracking Geomagnetic Storms with Dynamical System Approach: Ground-Based Observations" Remote Sensing 15, no. 12: 3031. https://doi.org/10.3390/rs15123031
APA StyleAlberti, T., De Michelis, P., Santarelli, L., Faranda, D., Consolini, G., & Marcucci, M. F. (2023). Tracking Geomagnetic Storms with Dynamical System Approach: Ground-Based Observations. Remote Sensing, 15(12), 3031. https://doi.org/10.3390/rs15123031